Cassini

Linaro Limited.

Oct 29, 2025

CONTENTS

1 Introduction 1
1.1 Use-Case Overview o ittt e 1
1.2 Architecture L e e e e e e e e 1
1.3 Features OVEIVIEW o v it i ettt e e e e e e e e 3

1.3.1 Documentation ASSUMPLIONS v v v v v i it e e e e e e e e e e e e e e 3
1.4 Repository StruCtUIe v vt e 4
1.5 Repository License e 4
1.6 Contributions and Issue Reportingo oL 5
1.7 Feedback and support e e e 5
1.8 Maintainer(s) e e e e e e e e e e e e 5

2 User Manual 7

2.1 Build, Deploy and Validate Cassini Image, 7
2.1.1 Build Host Environment Setup i e e e 8

2.1.2 Download 8

2.1.3 Buildand Deploy e 9

214 RUD . .. e e e e e 9

2.1.5 Validate L e e e 9

2.1.6 Reproducing the Cassini Use-Cases vt 9

2.2 Getting Started with Arm Corstone-1000 for MPS3 11
22,1 Build ... e 11

222 Building MPS3images L e 11

2.2.3 Prepare the firmware image for FPGA (MicroSDcard) 12

2.2.4 Prepare the distro image for FPGA (USBimage). 13

2.2.5 Running the software on FPGA e 14

2.3 Getting Started with Arm Corstone-1000 FVP o 14
23.1 Build ... e 14

232 Building FVPimages L e 15

233 Runningthe FVP o o e 15

234 Validation 15

2.4 Getting Started with KV260 o e e e e e 16
2.4.1 Building KV260 Images e 16

242 Flashing the Firmware e e 17

243 Flashingthe DistroImage e 17

244 Connecting tothe serial port L 18

2.5 Getting Started with Generic Arm64 Images o o v it e e 18
2.5.1 Building Generic Arm64 Images L e 18

2.5.2 Flashingthe DistroImage 19

3 Developer Manual 21

3.1 USer ACCOUNTS . . . v v v o o e e e e e e e e e e e e e e e e e

3.2 Build System L e e e e e e e e e e e
3.2.1 kasBuild Tool Support e
322 TargetPlatforms e
3.2.3 Distribution Image Features L
3.24 Additional Distribution Image Customizations
3.2.5 Manual BitBake Build Setup e
3.3 YoctoLayers e e e e e e e e e e e e
3.3.1 Layer Dependency Overview e
34 Security Hardening L e e e e e e e
3.5 Validation oL e e e e
3.5.1 Build-Time Kernel Configuration Check
3.5.2 Run-Time Integration Tests o 0 i e e e e
3.6 Mender Validation L e e
3.6.1 OVEIVIEW o e e e e e e e e e
3.6.2 Build with Mender Support L
3.6.3 SetupMender SEIVEr i e e e e e e e e e e e e e
3.6.4 DUTProvisioning o v v v v it e e e e e e e e e e e e e e
3.6.5 Mender System Update e e e e e e
3.6.6 Mender Capsule Update e
3.6.7 StopMender Servero e e e e e e e e e e e
3.7 Building the documentation e

Codeline Management

4.1 Yocto Release Process Overview 0L o e e e
4.2 Cassini Branch and Release Process
4.2.1 Cassinimainbranch e
4.2.2 Cassinirelease branches L L
423 Cassinirelease tags L.
Contributing
5.1 LHcenseo e e e
5.2 Contributing to Cassini distribution 0oL L oo
5.3 Commit guidelines L e e e
5.3.1 Describe your changes L e e e
5.3.2 Separate your changes i e e e e e e e e e e e
5.3.3 Commit messages guidelines e e
5.4 Changelogentries L i e e e e e e e e e
541 0 OVErVIEW o L e e e e e e e e e e
5.4.2 What warrants a changelog entry? oL o
5.4.3 Writing good changelogentries e e
5.4.4 How to generate a changelogentry e
5.5 Submittingchanges e
5.6 Mergecriteria L L e e e e e e e e e e

Continuous integration and development (CI/CD)

6.1 Introduction e e e e e e e e
6.1.1 OVeIVIEW i e e e e e e e e e e e e
6.1.2 Architecture e e e e e e e e
6.2 GitLab Templates e e e e e e e e e e e e e
6.3 CodeQuality i i e e e e e e e e e e e
6.3.1 USage e e e e e
6.3.2 HoOKS e e e e e e
6.4 GitLabpipeline e

55
55
56
56
56
57

59
59
59
60
60
61
61
62
62
63
64
64
65
65

6.4.1 Parentpipeline e e e e e e e e e e 71

6.42 Childpipeline o e e e e e e e e 72
6.5 Amazon Web Services (AWS) IoT Device Tester IDT) 72
6.5.1 OVEIVIEW o it e e e e e e e e e e e e 73
License 75
7.1 SPDX Identifiers e e e e e e e e e e e e 75
Release Notes 77
8.1 VI.O.0 . . . e e e e e e e e e 77
8.1.1 Known Issues or Limitations e 77
8.1.2 Known Test Failures e 78
8.2 VL.O.L . . . e e e 80
8.2.1 Known Issues or Limitations 80
8.2.2 Known Test Failures e e e 81
8.3 VL0 . . e e e e e e e e e 83
8.3.1 Known Issues or Limitations e 83
8.3.2 Known Test Failures e 84
8.4 v2.0.0 . . L e e e 86
8.4.1 Known Issues or Limitations 86
8.4.2 Known Test Failures e e 87
8.5 V2.0 . . e e e e e e e e 90
8.5.1 Known Issues or Limitations e 90
852 Known TestFailures e 90

CHAPTER
ONE

INTRODUCTION

Project Cassini is the open, collaborative, standards-based initiative to deliver a seamless cloud-native software expe-
rience for devices based on Arm Cortex-A.

Current release of Cassini distribution provides a framework for deployment and orchestration of applications (edge
runtime) within containers and support for platform abstraction for security (PARSEC).

Cassini distribution includes support for provisioning the platform and updating cassini distribution software stack over
the air.

1.1 Use-Case Overview
Cassini aims to facilitate the deployment of application workloads via Docker and K3s use-case on the supported target

platforms.

Instructions for achieving these use-cases are given in the build section, subject to relevant assumed technical knowledge
as listed later in documentation assumptions.

1.2 Architecture

The following diagram illustrates the Cassini Architecture.

Cassini

Cassini Architecture

Application Workloads

Containers

Linux-Based Filesystem

OCI Container Engine: Docker Container Orchestration: K3s

Cassini Run-Time Valldation Tests Cassinl Software Development Kit

Linux-Based Software Services

System Software

Linux Kernel

Bootloader

2 Chapter 1. Introduction

Cassini

The different software layers are described below:

1.3

Application workloads:

User-defined container applications that are deployed and executed on the Cassini software stack. Note that
the Cassini project provides the system infrastructure for user workloads, and not the application workloads
themselves. Instead, they should be deployed by end-users according to their individual use-cases.

Linux-based filesystem:

This is the main component provided by the Cassini project. The Cassini filesystem contains tools and services
that provide Cassini core functionalities and facilitate secure deployment and orchestration of user application
workloads. These tools and services include the Parsec service, the Docker container engine, the K3s container
orchestration framework, together with their run-time dependencies. In addition, Cassini provides supporting
packages such as those which enable run-time validation tests or software development capabilities on the target
platform.

System software:

System software specific to the target platform, composed of firmware, bootloader and the operating system.

Features Overview

Cassini includes the following major features:

Container engine and runtime with Docker and runc-opencontainers.

Container workload orchestration with the K3s Kubernetes distribution.

Parsec service and Parsec tool

On-target development support with optionally included Software Development Kit.
FTPM showcase and TPM tools.

AWS greengrass integration.

Device provisioning and over-the-air system update with mender.

Validation support with optionally included run-time integration tests, and build-time kernel configuration
checks.

Other features of Cassini include:

The features provided by the poky . conf distribution, which Cassini extends.
Systemd used as the init system.

RPM used as the package management system.

1.3.1 Documentation Assumptions

This documentation assumes a base level of knowledge related to different aspects of achieving the target use-case via
Cassini:

Application workload containerization, deployment, and orchestration

This documentation does not provide detailed guidance on developing application workloads, deploying them, or
managing their execution via Docker or the K3s orchestration framework, and instead focuses on Cassini-specific
instructions to support these activities on an Cassini distribution image.

1.3. Features Overview 3

Cassini

For information on how to use these technologies which are provided with the Cassini distribution, see the Docker
documentation and the K3s orchestration.

» The Yocto Project

This documentation contains instructions for achieving Cassini’s use-case using a set of included configuration
files that provide standard build features and settings. However, Cassini forms a distribution layer for integration
with the Yocto project and is thus highly configurable and extensible. This documentation supports those activi-
ties by detailing the available options for Cassini-specific customizations and extensions, but assumes knowledge
of the Yocto project necessary to prepare an appropriate build environment with these options configured.

Readers are referred to the Yocto Project Documentation for information on setting up and running non-standard
Cassini distribution builds.

1.4 Repository Structure

The meta-cassini repository is structured as follows:

* meta-cassini:

meta-cassini-bsp
A Yocto layer which holds board-specific recipes or append files that either:
% will not be upstreamed (Cassini specific modifications)
% have not been upstreamed yet
meta-cassini-distro
A Yocto distribution layer providing top-level and general policies for the Cassini distribution images.
meta-cassini-tests
A Yocto software layer with recipes that include run-time tests to validate Cassini functionalities.
kas

Directory which contains files to support use of the kas build tool.

1.5 Repository License

The repository’s standard license is the MIT license (more details in License), under which most of the repository’s
content is provided. Exceptions to this standard license relate to files that represent modifications to externally licensed
works (for example, patch files). These files may therefore be included in the repository under alternative licenses in
order to be compliant with the licensing requirements of the associated external works.

Contributions to the project should follow the same licensing arrangement.

Chapter 1. Introduction

https://docs.docker.com
https://docs.k3s.io/
https://docs.yoctoproject.org/dev/

Cassini

1.6 Contributions and Issue Reporting

Guidance for contributing to the Cassini project can be found at Contributing.

To report issues with the repository such as potential bugs, security concerns, or feature requests, please submit an
Issue via GitLab Issues, following the project’s template.

For known issues in this release, see Release Notes.

1.7 Feedback and support

To request support please contact Linaro at support@linaro.org.

1.8 Maintainer(s)

¢ Cassini Team

1.6. Contributions and Issue Reporting 5

https://gitlab.com/Linaro/cassini/meta-cassini/-/issues
mailto:support@linaro.org

Cassini

6 Chapter 1. Introduction

CHAPTER
TWO

USER MANUAL

2.1 Build, Deploy and Validate Cassini Image

The recommended approach for image build setup and customization is to use the kas build tool. To support this,
Cassini provides configuration files to setup and build different target images, different distribution image features, and
set associated parameter configurations.

This page first briefly describes below the kas configuration files provided with Cassini, before guidance is given on
using those kas configuration files to set up the Cassini distribution on a target platform.

Note: All command examples on this page can be copied by clicking the copy button. Any console prompts at the
start of each line, comments, or empty lines will be automatically excluded from the copied text.

The kas directory contains kas configuration files to support building and customizing Cassini distribution images via
kas. These kas configuration files contain default parameter settings for a Cassini distribution build. Here, the files are
briefly introduced, classified by type:

» Base Configs: Configures common software components
— cassini.yml to build an image for the Cassini distribution.
* Build Cloud Configs: Set and configure container runtime and cloud service
— no-cloud.yml to include the default container runtime without a cloud service.
— greengrass.yml to include Docker and the AWS IoT Greengrass V2 cloud service.
If no cloud config is specified, Docker and K3s orchestration is included by default
¢ Build OTA Update Config: Set and configure Over-the-air update service
— no-ota.yml to remove over-the-air update service.
Mender is included by default
* Build Modifier Configs: Set and configure features of the Cassini distribution
— dev.yml to configure the image for development using debug tweaks and disable Security Hardening.
— tests.yml to include run-time validation tests into the image with debug tweaks.
» Target Platform Configs: Set the target platform

For information on supported targets in Cassini and corresponding value for MACHINE variable, refer to Target
Platforms.

https://docs.docker.com
https://docs.aws.amazon.com/greengrass/
https://docs.docker.com
https://docs.k3s.io/
https://docs.mender.io/
https://docs.yoctoproject.org/dev/ref-manual/features.html#image-features
https://docs.yoctoproject.org/dev/ref-manual/features.html#image-features

Cassini

These kas configuration files can be used to build a custom Cassini distribution by passing the Base Config and one
Target Platform Config to the kas build tool. Build Cloud Configs, Build OTA Update Config and Build Modifier
Configs are optional (only one of each can be included). Configuration files are separated with a colon in the kas
execution command line, see examples below:

kas build <Base Config>:<Build Cloud Configs>:<Build OTA Update Config>:<Build Modifier..
—Configs>:<Target Platform Config>

In the next section, guidance is provided for configuring, building and deploying Cassini distributions using these kas
configuration files.

2.1.1 Build Host Environment Setup
This documentation assumes an Ubuntu based build host, where the build steps have been validated on the Ubuntu
20.04 LTS (Focal Fossa) and 22.04 LTS (Jammy Jellyfish).

A number of package dependencies must be installed on the Build Host to run build scenarios via the Yocto Project.
The Yocto Project documentation provides the list of essential packages together with a command for their installation.

The recommended approach for building Cassini is to use the kas build tool. To install kas:

[pythonS -m pip install kas==4.3.2 }

For more details on kas installation, see kas Dependencies & installation.

To deploy a Cassini distribution image onto the supported target platform, bmap-tools is used. This can be installed
via:

[sudo apt install bmap-tools]

Note: The Build Host should have at least 65 GBytes of free disk space to build a Cassini distribution image.

2.1.2 Download

The meta-cassini repository can be downloaded using Git, via:

Change the tag or branch to be fetched by replacing the value supplied to
the --branch parameter option

git clone https://gitlab.com/Linaro/cassini/meta-cassini.git --branch main
cd meta-cassini

8 Chapter 2. User Manual

https://docs.yoctoproject.org/dev//singleindex.html#required-packages-for-the-build-host
https://kas.readthedocs.io/en/4.3.2/userguide.html#dependencies-installation

Cassini

2.1.3 Build and Deploy

Refer to the platform guides instructions on how to build and deploy the Cassini images on supported platforms:
* Getting Started with Arm Corstone-1000 for MPS3
 Getting Started with Arm Corstone-1000 FVP
* Getting Started with KV260

* Getting Started with Generic Arm64 Images

2.1.4 Run

To run the deployed Cassini distribution image, simply boot the target platform.
The Cassini distribution image can be logged into as cassini user.

The distribution can then be used for deployment and orchestration of application workloads in order to achieve the
desired use-cases.

2.1.5 Validate

As an initial validation step, check that the appropriate Systemd services are running successfully,
* docker.service
* k3s.service is available unless a cloud modifier is included as part of the build config.
* greengrass.service is available if greengrass.yml is included as part of the build config.

A service can be checked by running the command:

{systemctl status --no-pager --lines=0 <systemd.service> }

And ensuring the command output lists them as active and running.

More thorough run-time validation of Cassini components are provided as a series of integration tests, available if the
kas/tests.yml kas configuration file was included in the image build.

Note: Due to performance limitations, K3s is not currently supported on the Arm Corstone-1000.

2.1.6 Reproducing the Cassini Use-Cases

This section briefly demonstrates simplified use-case examples, where detailed instructions for developing, deploying,
and orchestrating application workloads are left to the external documentation of the relevant technology.

2.1. Build, Deploy and Validate Cassini Image 9

Cassini

Deploying Application Workloads via Docker and K3s
This example deploys the Nginx web server as an application workload, using the nginx container image available
from Docker’s default image repository. The deployment can be achieved either via Docker or via K3s, as follows:

1. Boot the image and log-in as cassini user.

2. Ensure the target device can access the internet

[wget www.linaro.org }

The output should be similar to:

--2023-12-02 12:42:10-- http://www.linaro.org/

Resolving www.linaro.org... 18.165.227.69, 18.165.227.126, 18.165.227.43,
Connecting to www.linaro.org|18.165.227.69]:80... connected.

HTTP request sent, awaiting response... 301 Moved Permanently

Location: https://www.linaro.org/ [following]

--2023-12-02 12:42:10-- https://www.linaro.org/

Connecting to www.linaro.org|18.165.227.69|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 54811 (54K) [text/html]

Saving to: 'index.html.1'

index.html 100%[>] 53.53K 323KB/s in 0.2s

2023-12-02 12:42:26 (323 KB/s) - 'index.html' saved [54811/54811]

3. Deploy the example application workload:
¢ Deploy via Docker

3.1. Run the following example command to deploy via Docker:

[sudo docker run -p 8082:80 -d nginx]

3.2. Confirm the Docker container is running by checking its STATUS in the container list:

[sudo docker container list]

¢ Deploy via K3s

3.1. Run the following example command to deploy via K3s:

rcat << EOT > nginx-example.yml && sudo kubectl apply -f nginx-example.yml
apiVersion: vl
kind: Pod
metadata:
name: k3s-nginx-example
spec:
containers:
- name: nginx
image: nginx
ports:
- containerPort: 80

(continues on next page)

10 Chapter 2. User Manual

https://www.nginx.com/

Cassini

(continued from previous page)

hostPort: 8082
EOT
3.2. Confirm that the K3s Pod hosting the container is running by checking that its STATUS is running,
using:
[sudo kubectl get pods -o wide]

4. After the Nginx application workload has been successfully deployed, it can be interacted with on the network,
via for example:

[wget localhost: 8082]

Note: As both methods deploy a web server listening on port 8082, the two methods cannot be run simultaneously
and one deployment must be stopped before the other can start.

Note: Due to performance limitations, K3s is not currently supported on the Arm Corstone-1000.

2.2 Getting Started with Arm Corstone-1000 for MPS3

This document explains how to build, deploy, and boot the Cassini distro on the Arm Corstone-1000 for MPS3.
NOTE: Requires a micro SD card (at least 8 GB) and a USB drive (at least 16 GB)

Note: Due to performance limitations, K3s is not currently supported on the Arm Corstone-1000 for MPS3.

2.2.1 Build

The kas configuration file kas/corstone1000-mps3. yml can be used to build images which target the Corstone-1000
for MPS3.

2.2.2 Building MPS3 images

To build Corstone-1000 MPS3 images with default options:

[kas build --update kas/cassini.yml:kas/corstonel®00-mps3.yml }

This will produce a Corstone-1000 firmware image here:

build/tmp/deploy/images/corstonel®00-mps3/corstonel®®0-flash-firmware-image-corstonel®®0-mps3.
wic

And a Cassini distribution image here:

build/tmp/deploy/images/corstonel®®0-mps3/cassini-image-base-corstonel®00-mps3.
wic.gz

2.2. Getting Started with Arm Corstone-1000 for MPS3 11

Cassini

build/tmp/deploy/images/corstonel®00-mps3/cassini-image-base-corstonel®00-mps3.
wic.bmap

For other build options, refer to Build System

2.2.3 Prepare the firmware image for FPGA (Micro SD card)

The user should download the FPGA bit file image from this link and under the section AN550: Arm®
Corstone™-1000 for MPS3 Version 2.0.

Only copy the current directory structure under Boardfiles shown below on to the Micro SD Card.

config.txt
MB
—— BRD_LOG.TXT
—— HBIO309B
—— ANS550
AN550_v2.bit
E an550_v2.txt
images.txt
— board. txt
L— mbb_v210.ebf
L— HBI®309C
—— ANS550
AN550_v2.bit
E an550_v2.txt
images.txt
— board. txt
L— mbb_v210.ebf
SOFTWARE
an550_st.axf
bll.bin
cs1000.bin
ES®.bin

To configure the board to boot automatically when powered on, edit . /config.txt and change the value of AUTORUN
from FALSE to TRUE.

Depending upon the MPS3 board version (printed on the MPS3 board HBI0309B or HBIO309C) you should update
the . /AN550/images. txt file so that the file points to the images under SOFTWARE directory.

Here is an example

R R R R R R R R R R R R R R R e T R R

; Preload port mapping
; PORT ® & ADDRESS: 0x00_0000_0000 QSPI Flash (XNVM) (32MB)
; PORT ® & ADDRESS: 0x00_8000_0000 OCVM (DDR4 2GB)

; PORT 1 Secure Enclave (M0®+) ROM (64KB)

; PORT 2 External System ® (M3) Code RAM (256KB)
; PORT 3 Secure Enclave OTP memory (8KB)

; PORT 4 CVM (4MB)

[IMAGES]

(continues on next page)

12 Chapter 2. User Manual

https://developer.arm.com/tools-and-software/development-boards/fpga-prototyping-boards/download-fpga-images

Cassini

(continued from previous page)

TOTALIMAGES: 3 ;Number of Images (Max: 32)

IMAGEOPORT: 1

IMAGEQADDRESS: 0x00_0000_0000
IMAGEQUPDATE: RAM

IMAGEQFILE: \SOFTWARE\bll.bin

IMAGE1PORT: 0

IMAGE1ADDRESS: 0x00_0000_0000
IMAGE1UPDATE: AUTOQSPI
IMAGEIFILE: \SOFTWARE\cs1000.bin

IMAGE2PORT: 2

IMAGEZ2ADDRESS: 0x00_0000_0000
IMAGE2UPDATE: RAM

IMAGE2FILE: \SOFTWARE\es0.bin

The binaries are present in OUTPUT_DIR = <_workspace>/build/tmp/deploy/images/corstonel®00-mps3
directory.

1. Copy bl1l.bin from OUTPUT_DIR to SOFTWARE directory of the Micro SD card.

2. Copy corstonel@00-flash-firmware-image-corstonel®00-mps3.wic from OUTPUT_DIR directory to
SOFTWARE directory of the Micro SD card and rename the wic image to cs1000.bin.

3. Copy es_flashfw.bin from OUTPUT_DIR directory to SOFTWARE directory of the Micro SD card and
rename to es0.bin.

NOTE: Renaming of the images are required because MCC firmware has limitation of 8 characters before .(dot) and
3 characters after .(dot).

2.2.4 Prepare the distro image for FPGA (USB image)

Use the 1sb1lk command to determine USB drive and bmap tool to copy the cassini distro to it.

1sblk
sudo bmaptool copy --bmap cassini-image-base-corstonel@®00-mps3.wic.bmap cassini-image-
—base-corstonel®00-mps3.wic.gz /dev/<usb drive>

Note: bmaptool may fail if the host auto-mounts partitions on the USB drive. If these issues are seen then, disable
auto-mounting or use parted or fdisk to remove any existing partitions.

2.2. Getting Started with Arm Corstone-1000 for MPS3 13

Cassini

2.2.5 Running the software on FPGA

Insert SD card and USB drive before switching ON the device.
On the host machine, connect the board via USB.
If there are no other TTY USB devices, then the three ports from the MPS3 will be connected as follows:
* ttyUSBO for MCC, OP-TEE and Secure Partition
* ttyUSB1 for Boot Processor (Cortex-M0+)
* ttyUSB2 for Host Processor (Cortex-A35)
The rest of this guide assumes there are no other TTY USB devices on the host machine.
Connect to the serial console(s) using any terminal client (picocom, minicom, or screen should all work).

For example, run the following commands to open new picocom sessions for each port:

sudo picocom -b 115200 /dev/ttyUSBO®
sudo picocom -b 115200 /dev/ttyUSB1
sudo picocom -b 115200 /dev/ttyUSB2

Note: sudo should not be required if the current user is in the dialout group

Note: See notes under Run-Time Integration Tests before running validation steps.

Note: See notes under Corstone-1000 SystemReady IR on USB drive models stable with MPS3 FPGA.

2.3 Getting Started with Arm Corstone-1000 FVP

This document explains how to build and boot the Cassini distro on the Arm Corstone-1000 FVP (Fast Model Fixed
Virtual Platform).

Note: Due to performance limitations, K3s is not currently supported on the Arm Corstone-1000 FVP.

2.3.1 Build

The provided kas configuration file kas/corstonel®00-fvp.yml can be used to build images that are targeting the
Corstone-1000 FVP.

Note: To build and run any image for the Corstone-1000 FVP the user has to accept its EULA, which can be done by
executing the following command in the build environment:

[export FVP_CORSTONE1000_EULA_ACCEPT=True

14 Chapter 2. User Manual

https://corstone1000.docs.arm.com/en/latest/user-guide.html#systemready-ir
https://developer.arm.com/downloads/-/arm-ecosystem-fvps/eula

Cassini

2.3.2 Building FVP images

To build Corstone-1000 FVP images with default options:

[kas build --update kas/cassini.yml:kas/corstonel®00-fvp.yml }

Or if using kas-container:

kas-container --runtime-args "-e FVP_CORSTONE1000_EULA_ACCEPT=True" build \
kas/cassini.yml:kas/corstonel®00-fvp.yml

This will produce a Corstone-1000 firmware image here:

build/tmp/deploy/images/corstonel®00-fvp/corstonel®00-flash-firmware-image-corstonel®00-fvp.
wic

And a Cassini distribution image here:

build/tmp/deploy/images/corstonel®00-fvp/cassini-image-base-corstonel®00-fvp.
wic

For other build options, refer to Build System

2.3.3 Running the FVP

To start the FVP and get the console:

kas shell -c "../layers/meta-arm/scripts/runfvp --console" \
kas/cassini.yml:kas/corstonel®00-fvp.yml

Or if using kas-container:

kas-container --runtime-args "-e FVP_CORSTONE1000_EULA_ACCEPT=True" \
shell -c "/work/layers/meta-arm/scripts/runfvp --console" \
kas/cassini.yml:kas/corstonel®00-fvp.yml

By default, the Corstone-1000 FVP is configured for user mode networking. For more information and instructions on
how to configure networking with Fixed Virtual Platforms, refer to the Fast Models Reference Guide.

Note: See notes under Run-Time Integration Tests before running validation steps.

2.3.4 Validation

The following validation tests can be performed on the Cassini Reference Stack:
» System Integration Tests:

— Cassini Architecture Stack:

[TESTIMAGE_AUTO:I kas build kas/cassini.yml:kas/corstonel®00-fvp.yml]

Or if using kas-container:

2.3. Getting Started with Arm Corstone-1000 FVP 15

https://developer.arm.com/documentation/100964/1119/Introduction-to-Fast-Models/User-mode-networking

Cassini

kas-container --runtime-args "-e FVP_CORSTONE1000_EULA_ACCEPT=True -e TESTIMAGE_
—AUTO=1" build \
kas/cassini.yml:kas/corstonel®00-fvp.yml

The previous test takes around 2 minutes to complete.

A similar output should be printed out:

NOTE: Executing Tasks

Creating terminal default on host_terminal_0

default: Waiting for login prompt

RESULTS:

RESULTS - linuxboot.LinuxBootTest.test_linux_boot: PASSED (23.70s)

SUMMARY :

cassini-image-base () - Ran 1 test in 23.704s

cassini-image-base - OK - All required tests passed (successes=1, skipped=0,.
—failures=0, errors=0)

2.4 Getting Started with KV260

This document explains how to build, deploy, and boot the Cassini distro on Xilinx KV260 Platform.

2.4.1 Building KV260 Images

Note: When building on main branch, the preparation script: kas/scripts/generate_kv260_env.py must be
executed before attempting the following steps. This script pins the SHAs for layers involved in KV260 build according
to the meta-ts base.yml to follow the same update pace as meta-ts.

One of the provided kas configuration files can be used to build images which target KV260:
1. kas/kv260-psa.yml uses U-Boot as BL33, and has trusted-services.
2. kas/kv260-edk?2.yml uses EDK-II as BLL33, and has trusted-services.
3. kas/kv260-ftpm.yml uses U-Boot as B33, and has fTPM, and no trusted-services.
These will be referred to below as <kv260-variant>

To build an image with default options for any variant:

[kas build --update kas/cassini.yml:kas/<kv260-variant>.yml

Builds will produce the firmware images here:
build/tmp/deploy/images/<zyngmp-machine>/ImageA.bin
build/tmp/deploy/images/<zyngmp-machine>/ImageB.bin

and a Cassini distribution image here:

build/tmp/deploy/images/<zyngmp-machine>/cassini-image-base-<zyngmp-machine>.
rootfs.wic.gz

build/tmp/deploy/images/<zyngmp-machine>/cassini-image-base-<zyngmp-machine>.
rootfs.wic.bmap

16 Chapter 2. User Manual

https://gitlab.com/Linaro/trustedsubstrate/meta-ts/-/blob/master/kas/include/base.yml

Cassini

where <zyngmp-machine> can be derived from this table:

Table 1: <zyngmp-machine> Values

<kv260-variant> <zyngmp-machine>

kv260-psa zynqmp-kria-starter-psa
kv260-edk2 zyngmp-kria-starter-psa
kv260-ftpm zynqmp-kria-starter

For other build options, refer to Build System

2.4.2 Flashing the Firmware

1. Connect KV260 Ethernet port to the host machine

2. Power up the device while holding FWUEN button

3. In a browser, visit: http://192.168.0.111/, this will open Xilinx tool for flashing the firmware
4. Upload ImageA .bin and ImageB.bin

5. Reset the device

Note: The ethernet port on the host machine must be configured to have an IP address on the same
network as 192.168.0.111. For example:

e JP address: 192.168.0.110
¢ Subnet mask: 255.255.0.0

2.4.3 Flashing the Distro Image

1. Insert the SD card into the host machine
2. Check if the SD card is seen by the host machine via 1sblk.

This will output, for example:

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
<sd card> 179:0 0 16G 0 disk

pl 179:1 0O 256M O part

p2 179:2 0 512M O part

3. Flash the image onto the SD card using bmap-tools:

sudo bmaptool copy --bmap cassini-image-base-<zyngmp-machine>.rootfs.wic.bmap..
<,cassini-image-base-<zyngmp-machine>.rootfs.wic.gz /dev/<sd card>

4. Eject the SD card from the host machine, and insert it into KV260

2.4. Getting Started with KV260 17

Cassini

2.4.4 Connecting to the serial port

1. Connect a cable between the USB port of the host machine and the micro-USB port of KV260 and then power
on the device.

2. Check for new TTY USB devices detected by the host machine, via:

[15 /dev/ttyUSB* }

This will output, for example:

/dev/ttyUSBO
/dev/ttyUSB1
/dev/ttyUSB2
/dev/ttyUSB3

* ttyUSB1 is used for logs of both secure and non-secure sides.
* PMU uses one of the other ports, while the rest are not used at the moment.

3. Connect to the serial console using any terminal client (picocom, minicom, or screen should all work).

[sudo picocom -b 115200 /dev/ttyUSB1 }

2.5 Getting Started with Generic Arm64 Images

This document explains how to build and deploy a generic Arm64 distro image to an SD card.

Note: Refer to the platform’s user manual for details on how to configure the platform to boot the deployed image.

2.5.1 Building Generic Arm64 Images

The provided kas configuration file kas/genericarmé64.yml can be used to build images which target the arm64
machines. To build an image with default options:

[kas build --update kas/cassini.yml:kas/genericarm64.yml]

This will produce a Cassini generic Arm64 distribution image here:

build/tmp/deploy/images/genericarm64/cassini-image-base-genericarmé64.rootfs.
wic.gz

build/tmp/deploy/images/genericarm64/cassini-image-base-genericarmé64.rootfs.
wic.bmap

For other build options, refer to Build System

Note: This machine does not build any firmware components. For firmware build options, please refer to the platform
specific guidelines.

18 Chapter 2. User Manual

Cassini

2.5.2 Flashing the Distro Image

1. Insert the SD card into the host machine
2. Check if the SD card is seen by the host machine via 1sblk.

This will output, for example:

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
<sd card> 179:0 0 16G 0 disk

pl 179:1 0 256M 0 part

p2 179:2 0 512M O part

3. Flash the image onto the SD card using bmap-tools:

sudo bmaptool copy --bmap cassini-image-base-genericarmé64.rootfs.wic.bmap..
—,cassini-image-base-genericarm64.rootfs.wic.gz /dev/<sd card>

L J

4. Eject the SD card from the host machine, and insert it into any arm64 machine

2.5. Getting Started with Generic Arm64 Images 19

Cassini

20 Chapter 2. User Manual

CHAPTER
THREE

DEVELOPER MANUAL

3.1 User Accounts

Cassini distribution images contain the following user accounts:

* root with administrative privileges enabled by default. The login is disabled if cassini-security is included
in DISTRO_FEATURES.

Note: When cassini-test distro feature is enabled then root login is enabled. Currently, running
inline tests in LAVA require login as root to run transfer-overlay commands.

* cassini with administrative privileges enabled with sudo.
* user without administrative privileges.

* test with administrative privileges enabled with sudo. This account is created only if cassini-test is in-
cluded in DISTRO_FEATURES.

By default, each users account has disabled password. The default administrative group name is sudo. Other sudoers
configuration is included in meta-cassini-distro/recipes-extended/sudo/files/cassini_admin_group.
in.

If cassini-security is included in DISTRO_FEATURES, each user is prompted to a set new password on first login.
For more information about security see: security hardening.

All Run-Time Integration Tests are executed as the test user.

A Cassini distribution image can be configured to include run-time integration tests that validate successful configura-
tion of the Cassini user accounts. Details of the user accounts validation tests can be found in the User Accounts Tests
section of the Validation documentation.

3.2 Build System

A Cassini distribution can be built by setting the target platform via the MACHINE BitBake variable. In addition, the de-
sired distribution features via the DISTRO_FEATURES BitBake variable. Finally, customizing those features via feature-
specific modifiable variables, if needed.

This chapter provides an overview of Cassini’s support for the kas build tool. All the available distribution image
features and supported target platforms are defined together with their associated kas configuration files, followed by
any other additional customization options. The process for building without kas is then briefly described.

21

https://docs.lavasoftware.org/lava/actions-boot.html#transfer-overlay

Cassini

3.2.1 kas Build Tool Support

The kas build tool enables automatic fetch and inclusion of layer sources, as well as parameter and feature specifications
for building target images. To enable this, kas configuration files in the YAML format are passed to the tool to provide
the necessary definitions.

These kas configuration files are modular, where passing multiple files will result in an image produced with their
combined configuration. Further, kas configuration files can extend other kas configuration files, thereby enabling
specialized configurations that inherit common configurations.

The kas directory contains kas configuration files that support building images via kas for the Cassini project, and fall
into three ordered categories:

* Base Config
* Build Modifier Configs
» Target Platform Configs

To build an Cassini distribution image via kas, it is required to provide the Base Config and one Target Platform
Config, unless otherwise stated in their descriptions below. Additional Build Modifier Configs are optional, and
depend on the target use-case. Currently, it is necessary that kas configuration files are provided in order: The Base
Config and then additional build features via zero or more Build Modifier Configs, and finally the Target Platform
Config.

To enable builds for a supported target platform or configure each Cassini distribution image feature, kas configurations
files are described in their relevant sections below: Target Platforms and Distribution Image Features, respectively.
Example usage of these kas configuration files can be found in the Build and Deploy section of the User Manual.

Note: If a kas configuration file does not set a particular build parameter, the parameter will take its default value.

The kas build tool also provides a graphical user interface to build the Cassini distribution with different configs:

[kas menu kas/Kconfig

3.2.2 Target Platforms
Corstone-1000 for MPS3

¢ Corresponding value for MACHINE variable: corstonel®00-mps3
¢ Target Platform Config: kas/corstonel000-mps3.yml
To read documentation about the Corstone-1000, see the Arm Corstone-1000 Technical Overview.

For more information about the software stack for the Corstone-1000, see Arm Corstone-1000 Software.

22 Chapter 3. Developer Manual

https://developer.arm.com/documentation/102360/0000
https://corstone1000.docs.arm.com/en/latest/

Cassini

Corstone-1000 FVP

¢ Corresponding value for MACHINE variable: corstonel®00-fvp
» Target Platform Config: kas/corstonel®00-£fvp.yml

To read documentation about the Corstone-1000 FVP, see the Fast Models Fixed Virtual Platforms (FVP)
Reference Guide.

Kria KV260 with U-boot

¢ Corresponding value for MACHINE variable: zyngmp-kria-starter-psa
* Target Platform Config: kas/kv260-psa.yml
This supported target platform is Kria KV260, implemented in meta-trustedsubstrate.
This target uses U-Boot as BL33.
To read the Kria KV260 documentation, see: Kria KV260 User Guide and Kria KV260 Data sheet

Kria KV260 with EDK-II

¢ Corresponding value for MACHINE variable: zyngmp-kria-starter-psa

¢ Target Platform Config: kas/kv260-edk2.yml
This supported target platform is Kria KV260, implemented in meta-trustedsubstrate.
This target uses EDK-II as BL33.

Kria KV260 with fTPM

¢ Corresponding value for MACHINE variable: zynqmp-kria-starter
¢ Target Platform Config: kas/kv260-ftpm.yml
This supported target platform is Kria KV260, implemented in meta-trustedsubstrate.

This target uses U-Boot as BL33. It also uses fTPM, and has no trusted services.

Generic Arm64

¢ Corresponding value for MACHINE variable: genericarm64
e Target Platform Config: kas/genericarm64.yml

This MACHINE is used to represent a generic 64-bit platform that implements the Arm SystemReady
specification, has a working firmware and can boot via EFI.

This machine configuration does not build any firmware components.

All the above include common configuration from kas/include/arm-base.yml which defines layers and dependen-
cies required when building for all Arm-based platforms.

Moreover, corstonel@00-fvp.yml, and corstonel®00-mps3.yml Target Platform Config include common con-
figuration for Arm-maintained platforms from kas/include/arm-machines.yml which defines the BSPs, layers,
and dependencies required when building for each platform.

3.2. Build System 23

https://developer.arm.com/documentation/100966/1119
https://developer.arm.com/documentation/100966/1119
https://gitlab.com/Linaro/trustedsubstrate/meta-ts/-/blob/master/README.md
https://docs.xilinx.com/r/en-US/ug1089-kv260-starter-kit
https://docs.xilinx.com/r/en-US/ds986-kv260-starter-kit
https://gitlab.com/Linaro/trustedsubstrate/meta-ts/-/blob/master/README.md
https://gitlab.com/Linaro/trustedsubstrate/meta-ts/-/blob/master/README.md

Cassini

While all kv260-*.yml Target Platform Config include configuration from kas/include/xilinx-machines.yml
which defines specific layers and dependencies required when building for this platform.

3.2.3 Distribution Image Features

For a particular target platform, the available Cassini distribution image features (corresponding to the contents of the
DISTRO_FEATURES BitBake variable) are detailed in this section, along with any associated kas configuration files,
and any associated customization options relevant for that feature.

Cassini Architecture
Cassini distribution image can be configured via kas using Base Config. This includes a set of common configuration
from a base Cassini kas configuration file:

¢ kas/include/cassini-base.yml

This kas configuration file defines the base Cassini layer dependencies and their software sources, as well
as additional build configuration variables. It also includes the kas/include/cassini-release.yml
kas configuration file, where the layers dependencies are pinned for any corresponding Cassini release.

¢ Corresponding value in DISTRO variable: cassini.
¢ Base Config: kas/cassini.yml.

This Cassini distribution image feature enables the cassini-image-base build target, to build an Cassini
distribution image.

The Base Config for this distribution image feature sets the build target to cassini-image-base.

To build Cassini distribution image, provide the Base Config to the kas build command. For example, to
build a Cassini distribution image for the KV260 hardware target platform, run the following command:

[kas build kas/cassini.yml:kas/kv260-psa.yml J

Other Cassini Features

Developer Support

¢ Corresponding value in DISTRO_FEATURES variable: cassini-dev.
¢ Build Modifier Config: kas/dev.yml.

This Cassini distribution feature includes packages appropriate for development, such as the
allow-empty-password empty-root-password allow-root-login post-install-logging
packages and removing security-hardening features.

[kas build kas/cassini.yml:kas/dev.yml:kas/kv260-psa.yml J

24 Chapter 3. Developer Manual

Cassini

Run-Time Integration Tests

* Corresponding value in DISTRO_FEATURES variable: cassini-test.
* Build Modifier Config: kas/tests.yml.

This Cassini distribution feature includes the Cassini test suites provided to validate the image is running suc-
cessfully with the expected Cassini functionalities.

The Build Modifier for this distribution image feature automatically includes the Yocto Package Test (ptest)
framework in the image, configures the inclusion of meta-cassini-tests as a Yocto layer source for the
build, and appends the cassini-test feature to DISTRO_FEATURES for the build.

To include run-time integration tests in a Cassini distribution image, provide the Build Modifier Config to the
kas build command. For example, to include the tests in a Cassini distribution image for the KV260 hardware
target platform, run the following command:

[kas build kas/cassini.yml:kas/tests.yml:kas/kv260-psa.yml]

The size of the root filesystem is extended via the CASSINI_ROOTFS_EXTRA_SPACE BitBake variable, to
2000000 Kilobytes, which is required by this integration tests if Parsec service is enabled.

Each suite of run-time integration tests and specific customizable variables associated with each suite are detailed
separately, at Run-Time Integration Tests.

Cloud Service

This Cassini distribution feature includes container runtime and orchestration components.

VIRTUAL-RUNTIME_cloud_service is used to select one of three options.

No Cloud

¢ Corresponding value in DISTRO_FEATURES variable: cassini-cloud.
¢ Corresponding value in VIRTUAL-RUNTIME_cloud_service variable: no-cloud.
¢ Build Cloud Configs: kas/no-cloud.yml.

This Cassini distribution feature provides an image with a default container runtime option (podman) from meta-
virtualization without including any cloud provider.

To build a Cassini distribution image without a cloud provider, provide the Build Cloud Config to the kas build
command. For example:

[kas build kas/cassini.yml:kas/no-cloud.yml:kas/kv260-psa.yml }

3.2. Build System 25

Cassini

K3s orchestration

* Corresponding value in DISTRO_FEATURES variable: cassini-cloud.
¢ Corresponding value in VIRTUAL-RUNTIME_cloud-service™ **variable**: " “k3s-cloud.
* Build Cloud Configs: N/A (enabled by default).

This Cassini distribution feature includes the K3s cloud orchestration.

If Run-Time Integration Tests Build Modifier for this distribution image feature then it will automatically include
the required K3s Orchestration Tests test in the ptest framework of the image.

To include K3s orchestration in a Cassini distribution image, provide the Build Cloud Config to the kas build
command. For example:

The size of the root filesystem is extended via the CASSINI_ROOTFS_EXTRA_SPACE BitBake variable, to
2000000 Kilobytes, which is required by this cloud orchestration.

[kas build kas/cassini.yml:kas/kv260-psa.yml J

AWS loT Greengrass

¢ Corresponding value in DISTRO_FEATURES variable: cassini-cloud.
¢ Corresponding value in VIRTUAL-RUNTIME_cloud_service variable: greengrass-cloud.
* Build Cloud Configs: kas/greengrass.yml.

This Cassini distribution feature includes the AWS IoT Greengrass cloud service.

To include AWS IoT Greengrass cloud service in a Cassini distribution image, provide the Build Cloud Config
to the kas build command. For example:

The size of the root filesystem is extended via the CASSINI_ROOTFS_EXTRA_SPACE BitBake variable, to
2000000 Kilobytes, which is required by this cloud service.

[kas build kas/cassini.yml:kas/greengrass.yml:kas/kv260-psa.yml

Over-the-Air Update

This Cassini distribution feature includes over-the-air update support using mender.

VIRTUAL-RUNTIME_ota_update is used to select one of two options.

Mender

* Corresponding value in DISTRO_FEATURES variable: cassini-ota.
¢ Corresponding value in VIRTUAL-RUNTIME_ota_update variable: mender-ota.

This Cassini distribution feature includes the mender client and relevant services by default.

26 Chapter 3. Developer Manual

Cassini

No OTA

¢ Corresponding value in DISTRO_FEATURES variable: cassini-ota.
¢ Corresponding value in VIRTUAL-RUNTIME_ota_update variable: no-ota.
¢ Build Cloud Configs: kas/no-ota.yml.
This Cassini distribution feature provides an image without any Over-the-air update client.

To remove the update client in Cassini distribution image, provide the Build OTA Update Config to the kas
build command. For example:

[kas build kas/cassini.yml:kas/no-ota.yml:kas/kv260-psa.yml J

Security Service

This Cassini distribution feature configures parsec-service backend for the Cassini distribution image.

VIRTUAL-RUNTIME_security_provider is used to select one of three options.

PSA Provider

¢ Corresponding value in VIRTUAL-RUNTIME_security_provider variable: psa-provider.

* Build Cloud Configs: kas/psa-security.yml.

This Cassini distribution feature provides an image with parsec services that uses Trusted-Services as the backend
for crypto operations.

To build a Cassini distribution image with Trusted-Services as the parsec backend, provide the Build Security
Provider Config to the kas build command. For example:

[kas build kas/cassini.yml:kas/psa-security.yml:kas/kv260-psa.yml J

SW Provider

¢ Corresponding value in VIRTUAL-RUNTIME_security_provider variable: sw-provider.

¢ Build Cloud Configs: kas/sw-security.yml.

This Cassini distribution feature provides an image with parsec services that uses Mbed Crypto as the backend
for crypto operations.

To build a Cassini distribution image with Mbed Crypto as the parsec backend, provide the Build Security
Provider Config to the kas build command. For example:

[kas build kas/cassini.yml:kas/sw-security.yml:kas/kv260-psa.yml

3.2. Build System 27

Cassini

TPM Provider

¢ Corresponding value in VIRTUAL-RUNTIME_security_provider variable: tpm2-provider.
* Build Cloud Configs: kas/tpm2-security.yml.

This Cassini distribution feature provides an image with parsec services that uses TPM as the backend for crypto
operations.

By default, Cassini build will set VIRTUAL-RUNTIME_security_provider to tpm2-provider if cassini-tpm
feature is included.

However, to force using the TPM as the parsec backend, provide the Build Security Provider Config to the kas
build command.

For example:

[kas build kas/cassini.yml:kas/tpm2-security.yml:kas/kv260-psa.yml]

Parsec service

Corresponding value in DISTRO_FEATURES variable: cassini-parsec.
This Cassini distribution feature adds parsec-service and parsec-tool to the Cassini distribution image.

The value cassini-parsec is appended to DISTRO_FEATURES in meta-cassini-distro/conf/
distro/cassini.conf. Therefore, parsec service is included in the Cassini distribution image by
default. If parsec-service is not required then the value cassini-parsec can be removed from
DISTRO_FEATURES in the <distro name>.conf of the downstream distribution. To build Cassini dis-
tribution image with parsec-service for the KV260 hardware target platform, run the following command:

[kas build kas/cassini.yml:kas/kv260-psa.yml }

Security Hardening

* Corresponding value in DISTRO_FEATURES variable: cassini-security.

This Cassini distribution feature configures user accounts, packages, remote access controls and other image
features to provide extra security hardening for the Cassini distribution image.

Security hardening is enabled by default in the Cassini distribution image and the base configuration appends the
cassini-security feature to DISTRO_FEATURES for the build. To remove it in the Cassini distribution image,
kas/dev.yml can be used. For example:

[kas build kas/cassini.yml:kas/dev.yml:kas/kv260-psa.yml

The security hardening is described in more detail at Security Hardening.

28 Chapter 3. Developer Manual

Cassini

TPM Support

Corresponding value in DISTRO_FEATURES variable: cassini-tpm.
This Cassini distribution feature adds tpm?2 tools to the Cassini distribution image.

The value cassini-tpm is not appended to DISTRO_FEATURES by default. If TPM support is required,
then the value cassini-tpm can be added to DISTRO_FEATURES in the <distro name>.conf of the
downstream distribution. Note that the firmware must support TPM/fTPM as well.

To build Cassini distribution image with fTPM support for the KV260 hardware target platform, run the
following command:

[kas build kas/cassini.yml:kas/kv260-ftpm.yml }

3.2.4 Additional Distribution Image Customizations

An additional set of customization options are available for Cassini distribution images, which don’t fall under a distinct
distribution image feature. These customizations are listed below and are grouped by the customization target.

Filesystem Customization

Adding Extra Rootfs Space

The size of the root filesystem can be extended via the CASSINI_ROOTFS_EXTRA_SPACE BitBake variable. The value
of this variable is appended to the IMAGE_ROOTFS_EXTRA_SPACE BitBake variable.

Tuning the Filesystem Compilation

The Cassini filesystem by default uses the generic armv8a-crc tune for aarch64 based target platforms. This
reduces build times by increasing the sstate-cache reused between different image types and target platforms.
This optimization can be disabled by setting CASSINI_GENERIC_ARM64_FILESYSTEM to "0". The file sys-
tem compilation tune used when CASSINI_GENERIC_ARM64_FILESYSTEM is enabled can be changed by setting
CASSINI_GENERIC_ARM64_DEFAULTTUNE, which configures the DEFAULTTUNE BitBake variable for the aarch64
based target platforms builds. See DEFAULTTUNE for more information.

In summary, the relevant variables and their default values are:

CASSINI_GENERIC_ARM64_FILESYSTEM: "1" # Enable generic file system.
(1 or 0).

CASSINI_GENERIC_ARM64_DEFAULTTUNE: "armv8a-crc" # Value of DEFAULTTUNE if.
—generic file system enabled.

Their values can be set by passing them as environmental variables. For example, the optimization can be disabled
using:

CASSINI_GENERIC_ARM64_FILESYSTEM="0" kas build kas/cassini.yml:kas/kv260-psa.
<~>ym1

3.2. Build System 29

https://docs.yoctoproject.org/dev//ref-manual/variables.html#term-DEFAULTTUNE

Cassini

3.2.5 Manual BitBake Build Setup

In order to build an Cassini distribution image without the kas build tool directly via BitBake, it is necessary to prepare
a BitBake project as follows:

» Configure dependent Yocto layers in bblayers. conf.
* Configure the DISTRO as cassini in local.conf.
* Configure the image DISTRO_FEATURES in local. conf.

Assuming correct environment configuration, the BitBake build can then be run for the desired image target corre-
sponding to one of the following:

e cassini-image-base

As the kas build configuration files within the kas/ directory define the recommended build settings for each feature.
Any additional functionalities may therefore be enabled by reading these configuration files and manually inserting
their changes into the BitBake build environment.

3.3 Yocto Layers

The meta-cassini repository provides three layers compatible with the Yocto Project, in the following sub-directories:
e meta-cassini-bsp
A Yocto layer which holds board-specific recipes or append files that either:
— will not be upstreamed (Cassini specific modifications)
— have not been upstreamed yet
* meta-cassini-distro
A Yocto distribution layer providing top-level and general policies for the Cassini distribution images.
* meta-cassini-tests

A Yocto software layer with recipes that include run-time tests to validate Cassini functionalities.

3.3.1 Layer Dependency Overview

The following diagram illustrates the layers which are integrated by the Cassini project, which are further expanded on
below. The layer revisions are related to the Cassini v2.1.0 release.

30 Chapter 3. Developer Manual

Cassini

meta-cassini-distro

> poky
*» meta-openembedded meta-filesystems
> meta-virtualization meta-python
> meta-parsec meta-networking

when_building

-------- LSS meta-cassini-tests
when building

i SDK images
oo SDIMeE meta-clang

meta-arm-toolchain

when building for Arm reference platforms

— 'f
meta-arm
| Unaromaintained | 1
R —
meta-trustedsubstrate meta-Xilinx-core
=

meta-ledge-secure

when building for Xilinx KV-260
Optional Dependency ~ TTTTTTToTTTooossssosoosmsosoosoooooosoooooooooeees

Direct Dependency

l

Cassini distribution depends on the following layer dependency sources:

URL: https://git.yoctoproject.org/git/poky

layers: meta, meta-poky

branch: master

revision: ecd195a3ef96b7d1b41344e6399bfae60483a6¢8

URL: https://git.openembedded.org/meta-openembedded

layers: meta-filesystems, meta-networking, meta-oe, meta-python
branch: master

revision: 5d54a52fbeb69dba7b8aelldb98af4813951fa61l

URL: https://git.yoctoproject.org/git/meta-virtualization
layer: meta-virtualization

branch: master

revision: 9e9f60e959f3710fb7a16b9829d950c3d94c0d4a

URL: https://git.yoctoproject.org/git/meta-security

(continues on next page)

3.3. Yocto Layers 31

Cassini

(continued from previous page)

layers: meta-parsec
branch: master
revision: e2c44c8b5d02591ec®be3266d6667e16725bch92

URL: https://github.com/kraj/meta-clang

layers: meta-clang

branch: master

revision: c709a5196f1e8654425b43b478064395386c36d4

L J

Additional layers are conditionally required, depending on the specific Cassini distribution image being built and the
platform being targeted.

(URL: https://gitlab.arm.com/cassini/meta-cassini-bsp
layers: meta-cassini-bsp

branch: master

revision: 33e73ab2305dcb744eb44a9d5e5e48a846476954

URL: https://git.yoctoproject.org/git/meta-arm
layers: meta-arm, meta-arm-bsp, meta-arm-toolchain
branch: master

revision: 18bc3£9389907£f805b®a8ad4b6543bbdd0274d5e

URL: https://github.com/Wind-River/meta-secure-core
layers: meta, meta-efi-secure-boot, meta-signing-key
branch: master

revision: 59d7e90542947c342098863b9998693ac79352b0

URL: https://gitlab.com/Linaro/trustedsubstrate/meta-ts.git
layers: meta-trustedsubstrate

branch: master

revision: 2ab172ff5b22506f4ece8e8c5e0£f7728ed8722c3

URL: https://gitlab.com/Linaro/trustedsubstrate/meta-ledge-secure.git
layers: meta-ledge-secure

branch: main

revision: b4aa684ec00652e0c42576c998184e468e55030a

URL: https://github.com/Xilinx/meta-xilinx

layers: meta-xilinx-core

branch: master

revision: 1d98f8981e3157aa265cal4la®fc9e6e2640394f

URL: https://github.com/aws/meta-aws

layers: meta-aws

branch: master

revision: cfabc95aa0f2847fa3c55f8ba3flcd11cf8906¢c7

URL: https://github.com/mendersoftware/meta-mender
layers: meta-mender

branch: scarthgap

revision: 05e4f995ea3461cl6b2caf%9aa®l2b12d®1d9a91e6

L J

» Cassini firmware images built for the Corstone-1000 platforms requires meta-cassini-bsp,

32 Chapter 3. Developer Manual

Cassini

meta-arm, meta-arm-bsp, and meta-arm-toolchain.

 Cassini firmware images built for the Corstone-1000 also use efi-secure-boot and its dependen-
cies to generate certificates for UEFI capsule images

e Cassini firmware images built for KV260 also require meta-arm, meta-arm-toolchain,
meta-trustedsubstrate, meta-xilinx-core, and meta-ledge-secure.

e Cassini distro images built with the greengrass-cloud feature also require meta-aws and
meta-multimedia.

¢ Cassini distro images built with the mender-ota feature also require meta-mender.

3.4 Security Hardening

Cassini distribution images can be hardened to reduce potential sources or attack vectors of security vulnerabilities.
Cassini security hardening modifies the distribution to:

* Force password update for each user account after first logging in. An empty and expired password is set for
each user account by default.

* Enhance the kernel security, kernel configuration is extended with the security.scc in KERNEL_FEATURES.

e Enable the ‘Secure Computing Mode’ (seccomp) Linux kernel feature by appending seccomp to
DISTRO_FEATURES.

* Ensure that all available packages from meta-openembedded and poky layers are configured with:
--with-libcap[-ng].

¢ Remove empty-root-password allow-root-login post-install-logging from IMAGE_FEATURES
* Enable allow-empty-password to allow empty password on Cassini image boot.

 Disable all login access to the root account.

Note: When cassini-test distro feature is enabled then root login is enabled. Currently, running inline
tests in LAVA require login as root to run transfer-overlay commands.

* Sets the umask to 0027 (which translates permissions as 640 for files and 750 for directories).

Security hardening is enabled by default, see Security Hardening for details.

Note: Cassini security hardening does not reduce the scope of the Run-Time Integration Tests.

3.5 Validation

3.5.1 Build-Time Kernel Configuration Check

After the kernel configuration has been produced during the build, it is checked to validate the presence of necessary
kernel configuration to comply with specific Cassini functionalities.

A list of required kernel configs is used as a reference, and compared against the list of available configs in the kernel
build. All reference configs need to be present either as module (=m) or built-in (=y). A BitBake warning message is
produced if the kernel is not configured as expected.

3.4. Security Hardening 33

https://docs.lavasoftware.org/lava/actions-boot.html#transfer-overlay

Cassini

The following kernel configuration checks are performed:
¢ Container engine support:

Check performed via: meta-cassini-distro/classes/containers_kernelcfg_check.bbclass. By
default Yocto Docker config is used as the reference.

* K3s orchestration support:

Check performed via: meta-cassini-distro/classes/k3s_kernelcfg_check.bbclass. By default
Yocto K3s config is used as the reference.

3.5.2 Run-Time Integration Tests
The meta-cassini-tests Yocto layer contains recipes and configuration for including run-time integration tests into
an Cassini distribution, to be run manually after booting the image.

The Cassini run-time integration tests are a mechanism for validating Cassini core functionalities. The following inte-
gration test suites are included in the Cassini distribution image:

* Container Engine Tests
* Parsec OpenSSL Provider Tests
* K3s Orchestration Tests (not supported on Corstone-1000)
* User Accounts Tests
* Parsec simple end-to-end Tests
* Platform Security Architecture API Tests
The tests are built as a Yocto Package Test (ptest), and implemented using the Bash Automated Test System (BATS).

Run-time integration tests are not included in a Cassini distribution image by default, and must instead be included
explicitly. See Run-Time Integration Tests within the Build System documentation for details on how to include the
tests.

The test suites are executed using the test user account, which has sudo privileges. More information about user
accounts can be found at User Accounts.

Note: Container Engine and K3s Orchestration tests require access to the internet e.g. to download container images
from external image hubs.

Note: When running on platforms with limited performance, the default Linux networking services may timeout
before they can initialize properly. The base image provides a helper script to make sure the network is working before
tests are run.

[sudo wait-online.sh eth®

This step is currently necessary on Corstone-1000 platforms (FVP and MPS3).

34 Chapter 3. Developer Manual

https://git.yoctoproject.org/yocto-kernel-cache/tree/cfg/docker.cfg?h=yocto-6.10
https://git.yoctoproject.org/yocto-kernel-cache/tree/cfg/kubernetes.cfg?h=yocto-6.10
https://wiki.yoctoproject.org/wiki/Ptest
https://github.com/bats-core/bats-core

Cassini

Preparing the device
Before running the tests, the device under test should be reset to make sure no unnecessary processes are running. In

addition, when using the Corstone-1000 for MPS3, the secure flash used by Platform Security Architecture API Tests
should be wiped. The process for doing this is described here Clean Secure Flash Before Testing.

Running the Tests

If the tests have been included in the Cassini distribution image, they may be run via the ptest framework, using the
following command after booting the image and logging in:

[ptest—runner [-t timeout] [test-suite-id]]

If the test suite identifier ([test-suite-id]) is omitted, all integration tests will be run. For example, running
ptest-runner produces output such as the following:

$ ptest-runner

START: ptest-runner

[...]
PASS:container-engine-integration-tests
[...]

PASS:k3s-integration-tests

[...]
PASS:user-accounts-integration-tests
[...]

STOP: ptest-runner

Note: ptest-runner -1 isauseful command to list the available test suites in the image.

Note: [-t timeout] specifies a timeout in seconds and must be supplied if the test takes longer than the default
(300). You can use the duration estimates for each test to set this value.

Alternatively, a single standalone test suite may be run via a runner script included in the test suite directory:

[/usr/share/ [test-suite-id]/run-[test-suite-id]]

Upon completion of the test-suite, a result indicator will be output by the script, as one of two options:
PASS: [test-suite-id] or FAIL: [test-suite-id], as well as an appropriate exit status.

A test suite consists of one or more ‘top-level’ BATS tests, which may be composed of multiple assertions, where each
assertion is considered a named sub-test. If a sub-test fails, its individual result will be included in the output with a
similar format. In addition, if a test failed then debugging information will be provided in the output of type DEBUG.
The format of these results are described in Test Logging.

3.5. Validation 35

https://corstone1000.docs.arm.com/en/latest/user-guide.html#clean-secure-flash

Cassini

Test Logging

Test suite execution outputs results and debugging information into a log file. As the test suites are executed using
the test user account, this log file will be owned by the test user and located in the test user’s home directory by
default, at:

/home/test/runtime-integration-tests-logs/[test-suite-id].log

Therefore, reading this file as another user will require sudo access. The location of the log file for each test suite is
customizable, as described in the detailed documentation for each test suite below. The log file is replaced on each new
execution of a test suite.

The log file will record the results of each top-level integration test, as well as a result for each individual sub-test up
until a failing sub-test is encountered.

Each top-level result is formatted as:
TIMESTAMP RESULT: [top_level_test_name]
Each sub-test result is formatted as:
TIMESTAMP RESULT: [top_level_test_name]: [sub_test_name]

Where TIMESTAMP is of the format %Y-%m-%d %H:%M:%S (see Python Datetime Format Codes), and RESULT is either
PASS, FAIL, or SKIP.

On a test failure, a debugging message of type DEBUG will be written to the log. The format of a debugging message is:
TIMESTAMP DEBUG: [top_level_test_name]: [return_code]:[stdout]: [stderr]

Additional informational messages may appear in the log file with INFO or DEBUG message types, e.g. to log that an
environment clean-up action occurred.

Test Suites

The test suites are detailed below.

Container Engine Tests

Duration: up to 30 min
The container engine test suite is identified as:
container-engine-integration-tests
for execution via ptest-runner or as a standalone BATS suite, as described in Preparing the device.

The test suite is built and installed in the image according to the following BitBake recipe: meta-cassini-tests/
recipes-tests/runtime-integration-tests/container-engine-integration-tests.bb.

Currently the test suite contains three top-level integration tests, which run consecutively in the following order.

1. run container is composed of four sub-tests:
1.1. Run a containerized detached workload via the docker run command
- Pull an image from the network
- Create and start a container
1.2. Check the container is running via the docker inspect command
1.3. Remove the running container via the docker remove command

36 Chapter 3. Developer Manual

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes

Cassini

- Stop the container
- Remove the container from the container list
1.4. Check the container is not found via the docker inspect command
2. container network connectivity is composed of a single sub-test:
2.1. Run a containerized, immediate (non-detached) network-based workload via the docker run command
- Create and start a container, re-using the existing image
- Update package lists within container from external network

The tests can be customized via environment variables passed to the execution, each prefixed by CE_ to identify the
variable as associated to the container engine tests:

CE_TEST_IMAGE: defines the container image
Default: docker.io/library/alpine
CE_TEST_LOG_DIR: defines the location of the log file
Default: /home/test/runtime-integration-tests-logs/
Directory will be created if it does not exist
See Test Logging
CE_TEST_CLEAN_ENV: enable test environment clean-up
Default: 1 (enabled)

See Container Engine Environment Clean-Up

Container Engine Environment Clean-Up

A clean environment is expected when running the container engine tests. For example, if the target image already
exists within the container engine environment, then the functionality to pull the image over the network will not be
validated. Or, if there are running containers from previous (failed) tests then they may interfere with subsequent test
executions.

Therefore, if CE_TEST_CLEAN_ENV is set to 1 (as is default), running the test suite will perform an environment clean
before and after the suite execution.

The environment clean operation involves:
* Determination and removal of all running containers of the image given by CE_TEST_IMAGE
* Removal of the image given by CE_TEST_IMAGE, if it exists

If enabled then the environment clean operations will always be run, regardless of test-suite success or failure.

Parsec OpenSSL Provider Tests

Duration: up r0 20 min
The parsec openssl provider test suite is identified as:
parsec-openssl-provider-tests
for execution via ptest-runner or as a standalone BATS suite, as described in Preparing the device.

The test suite is built and installed in the image according to the following BitBake recipe: meta-cassini-tests/
recipes-tests/runtime-integration-tests/parsec-openssl-provider-tests.bb.

3.5. Validation 37

Cassini

Currently the test suite contains the following tests, which run consecutively in the following order.

1. pull image is composed of a single sub-test:
1.1. Pull the image via the docker image pull and retry thrice in case of failure
2. run container is composed of multiple sub-tests:
2.1. Run a containerized detached workload via the docker run command to create and start a container
2.2. Check the container is running via the docker inspect command
2.3. Check parsec openssl provider connectivity to the host parsec service via docker exec command
3. stop container is composed of multiple sub-tests:
3.1. Remove the running container via the docker remove command
- Stop the container
- Remove the container from the container list
3.2. Check the container is not found via the docker inspect command

The tests can be customized via environment variables passed to the execution, each prefixed by POP_ to identify the
variable as associated to the container engine tests:

"POP_TEST_IMAGE: defines the container image
Default:
registry.gitlab.com/linaro/cassini/meta-cassini/parsec-openssl-provider-image:latest

POP_TEST_LOG_DIR: defines the location of the log file
Default: /home/test/runtime-integration-tests-logs/
Directory will be created if it does not exist
See Test Logging
POP_TEST_CLEAN_ENV: enable test environment clean-up
Default: 1 (enabled)
See Parsec OpenSSL Provider Environment Clean-Up

Note: Due to performance limitations, this test takes around 4 hours on Corstone-1000 FVP and 20 hours on Corstone-
1000 MPS3.

Parsec OpenSSL Provider Environment Clean-Up

A clean environment is expected when running the parsec openssl provider tests. For example, if the target image
already exists within the parsec openssl provider environment, then the functionality to pull the image over the network
will not be validated. Ofr, if there are running containers from previous (failed) tests then they may interfere with
subsequent test executions.

Therefore, if POP_TEST_CLEAN_ENV is set to 1 (as is default), running the test suite will perform an environment clean
before and after the suite execution.

The environment clean operation involves:
* Determination and removal of all running containers of the image given by POP_TEST_INMAGE

* Removal of the image given by POP_TEST_IMAGE, if it exists

38 Chapter 3. Developer Manual

Cassini

If enabled then the environment clean operations will always be run, regardless of test-suite success or failure.

TPM OpenSSL Provider Tests

Duration: up to 20 min
The TPM openssl provider test suite is identified as:
tpm-openssl-provider-tests
for execution via ptest-runner or as a standalone BATS suite, as described in Preparing the device.

The test suite is built and installed in the image according to the following BitBake recipe: meta-cassini-tests/
recipes-tests/runtime-integration-tests/tpm-openssl-provider-tests.bb.

It’s only available when cassini-tpm feature is enabled, and contains the following tests:

1. Health check is a sanity check that ensures the TPM provider is
in the providers list.
2. Integration Tests are imported from tpm2-openssl tests.

The tests can be customized via environment variables passed to the execution, each prefixed by TOP_

TOP_TEST_LOG_DIR: defines the location of the log file
Default: /home/test/runtime-integration-tests-logs/
Directory will be created if it does not exist
See Test Logging
TOP_TEST_CLEAN_ENV: enable test environment clean-up
Default: 1 (enabled)
See TPM OpenSSL Provider Environment Clean-Up

TPM OpenSSL Provider Environment Clean-Up

In addition, the clean-up operations will only occur if TOP_TEST_CLEAN_ENV is set to 1 (as is default).
Currently, no clean-up is required as each api test cleans up temporary files before exiting.

If enabled then the environment clean operations will always be run, regardless of test-suite success or failure.

K3s Orchestration Tests

Duration: up to 10 min
The K3s test suite is identified as:
k3s-integration-tests
for execution via ptest-runner or as a standalone BATS suite, as described in Preparing the device.

The test suite is built and installed in the image according to the following BitBake recipe within
meta-cassini-tests/recipes-tests/runtime-integration-tests/k3s-integration-tests.bb.

3.5. Validation 39

https://github.com/tpm2-software/tpm2-openssl/tree/master/test/

Cassini

Currently the test suite contains a single top-level integration test which validates the deployment and high-availability
of a test workload based on the Nginx web server.

The K3s integration tests consider a single-node cluster, which runs a K3s server together with its built-in worker agent.
The containerized test workload is therefore deployed to this node for scheduling and execution.

The test suite will not be run until the appropriate K3s services are in the ‘active’ state, and all ‘kube-system’ pods are
either running, or have completed their workload.

1. K3s container orchestration is composed of many sub-tests, grouped here by test area:

Workload Deployment:

1.1. Deploy test Nginx workload from YAML file via kubectl apply

1.2. Ensure Pods are initialized via kubectl wait

1.3. Create NodePort Service to expose Deployment via kubectl create service
1.4. Get the IP of the node(s) running the Deployment via kubectl get

1.5. Ensure web service is accessible on the node(s) via wget

Deployment Upgrade:

1.6. Check initial image version of running Deployment via kubectl get

1.7. Get all pre-upgrade Pod names running Deployment via kubectl get

1.8. Upgrade image version of Deployment via kubectl set

1.9. Ensure a new set of Pod names have been started via kubectl wait and kubectl get
1.10. Check Pods are running the upgraded image version via kubectl get

1.11. Ensure web service is still accessible on the node(s) via wget

Server Failure Tolerance:

1.12. Stop K3s server Systemd service via systemctl stop

1.13. Ensure web service is still accessible on the node(s) via wget

1.14. Restart the Systemd service via systemctl start

1.15. Check K3s server is again responding to kubectl get

The tests can be customized via environment variables passed to the execution, each prefixed by K3S_ to identify the
variable as associated to the K3s orchestration tests:

K3S_TEST_LOG_DIR: defines the location of the log file

Default: /home/test/runtime-integration-tests-logs/
Directory will be created if it does not exist
See Test Logging

K3S_TEST_CLEAN_ENV: enable test environment clean-up

Default: 1 (enabled)
See K3s Environment Clean-Up

Note: Only supported when K3s cloud service is selected.

40

Chapter 3. Developer Manual

https://www.nginx.com/

Cassini

K3s Environment Clean-Up

A clean environment is expected when running the K3s integration tests, to ensure that the system is ready to be
validated. For example, the test suite expects that the Pods created from any previous execution of the integration tests
have been deleted, in order to test that a new Deployment successfully initializes new Pods for orchestration.

Therefore, if K3S_TEST_CLEAN_ENV is set to 1 (as is default), running the test suite will perform an environment clean
before and after the suite execution.

The environment clean operation involves:
* Deleting any previous K3s test Service
* Deleting any previous K3s test Deployment, ensuring corresponding Pods are also deleted

If enabled then the environment clean operations will always be run, regardless of test-suite success or failure.

User Accounts Tests

Duration: up ro 10 min
The User Accounts test suite is identified as:
user-accounts-integration-tests
for execution via ptest-runner or as a standalone BATS suite, as described in Preparing the device.

The test suite is built and installed in the image according to the following Bit-
Bake recipe within meta-cassini-tests/recipes-tests/runtime-integration-tests/
user-accounts-integration-tests.bb.

The test suite validates that the user accounts described in User Accounts are correctly configured with appropriate
access permissions on the Cassini distribution image. The validation performed by the test suite is dependent whether
or not it has been configured with Cassini Security Hardening.

As the configuration of user accounts is modified for Cassini distribution image which is built with Cassini security
hardening, additional security-related validation is included in the test suite for this image. These additional tests
validate that the appropriate password requirements and that the mask configuration for permission control of newly
created files and directories is applied correctly.

The test suite therefore contains following integration tests:

1. user accounts management tests is composed of three sub-tests:

1.1. Check home directory permissions are correct for the default non-privileged Cassini user account, via the
filesystem stat utility

1.2. Check the default privileged Cassini user account has sudo command access
1.3. Check the default non-privileged Cassini user account does not have sudo command access

2. user accounts management additional security tests is only included for images configured with
Cassini security hardening, and is composed of four sub-tests:

2.1. Log-in to a local console using the non-privileged Cassini user account
- As part of the log-in procedure, validate the user is prompted to set an account password
2.2. Check that the umask value is set correctly

The tests can be customized via environment variables passed to the execution, each prefixed by UA_ to identify the
variable as associated to the user accounts tests:

3.5. Validation 41

Cassini

UA_TEST_LOG_DIR: defines the location of the log file
Default: /home/test/runtime-integration-tests-logs/
Directory will be created if it does not exist
See Test Logging
UA_TEST_CLEAN_ENV: enable test environment clean-up
Default: 1 (enabled)
See User Accounts Environment Clean-Up

User Accounts Environment Clean-Up

As the user accounts integration tests only modify the system for images built with Cassini security hardening, clean-up
operations are only performed when running the test suite on these images.

In addition, the clean-up operations will only occur if UA_TEST_CLEAN_ENV is set to 1 (as is default).
The environment clean-up operations for images built with Cassini security hardening are:

* Reset the password for the test user account

* Reset the password for the non-privileged Cassini user account

After the environment clean-up, the user accounts will return to their original state where the first log-in will prompt
the user for a new account password.

If enabled then the environment clean operations will always be run, regardless of test-suite success or failure.

Parsec simple end-to-end Tests

Duration: up to 5 hours
The Parsec simple end2end test suite is identified as:
parsec-simple-e2e-tests
for execution via ptest-runner or as a standalone BATS suite, as described in Preparing the device.

The test suite is built and installed in the image according to the following BitBake recipe within
meta-cassini-tests/recipes-tests/runtime-integration-tests/parsec-simple-e2e-tests.bb.

The test suite validates Parsec service in Cassini distribution image by running simple end2end tests available in parsec-
tool.

The tests can be customized via environment variables passed to the execution, each prefixed by PS_ to identify the
variable as associated to the Parsec simple end2end tests:

PS_TEST_LOG_DIR: defines the location of the log file
Default: /home/test/runtime-integration-tests-logs/
Directory will be created if it does not exist
See Test Logging
PS_TEST_CLEAN_ENV: enable test environment clean-up
Default: 1 (enabled)
See Parsec Simple End2End Tests Environment Clean-Up

42 Chapter 3. Developer Manual

https://github.com/parallaxsecond/parsec-tool/blob/main/tests/parsec-cli-tests.sh
https://github.com/parallaxsecond/parsec-tool/blob/main/tests/parsec-cli-tests.sh

Cassini

Parsec Simple End2End Tests Environment Clean-Up

In addition, the clean-up operations will only occur if PS_TEST_CLEAN_ENV is set to 1 (as is default).

Currently, no clean-up is required as simple end2end tests script parsec-cli-tests.sh cleans up temporary files
before exiting.

If enabled then the environment clean operations will always be run, regardless of test-suite success or failure.

Platform Security Architecture API Tests

Duration: up to I hour
The Platform Security Architecture API test suite is identified as:
psa-arch-tests
for execution via ptest-runner or as a standalone BATS suite, as described in Preparing the device.

The test suite is built and installed in the image according to the following BitBake recipe within
meta-cassini-tests/recipes-tests/runtime-integration-tests/psa-arch-tests.bb.

The test suite validates security requirements of PSA Certified API's Architecture on Arm-based platforms available
in psa-api-tests.

The tests can be customized via environment variables passed to the execution, each prefixed by PSA_ to identify the
variable as associated to the PSA API tests:

PSA_ARCH_TESTS_TEST_LOG_DIR: defines the location of the log file
Default: /home/test/runtime-integration-tests-logs/
Directory will be created if it does not exist
See Test Logging

PSA_ARCH_TESTS_TEST_CLEAN_ENV: enable test environment clean-up
Default: 1 (enabled)

See Platform Security Architecture API Tests Environment Clean-Up

Platform Security Architecture API Tests Environment Clean-Up

In addition, the clean-up operations will only occur if PSA_ARCH_TESTS_TEST_CLEAN_ENV is set to 1 (as is default).
Currently, no clean-up is required as each api test cleans up temporary files before exiting.

If enabled then the environment clean operations will always be run, regardless of test-suite success or failure.

3.5. Validation 43

https://github.com/ARM-software/psa-arch-tests/tree/main/api-tests/dev_apis

Cassini

3.6 Mender Validation

3.6.1 Overview
Mender is a secure and robust Open source over-the-air (OTA) update manager for Embedded Linux devices. It is used
to validate end-to-end OTA functionality across Cassini platforms.
It offers:
* A/B system updates
 Capsule updates for firmware
* Robust rollback mechanisms
* Secure authentication and artifact verification
* Device grouping and phased rollout support
Duration: up to 60 minutes

This section describes the manual testing process for validating Mender client on Cassini platforms. It ensures end-to-
end OTA functionality including provisioning, mender system update and mender capsule update.

The validation workflow begins with the following preparation steps:
* Build with Mender Support
» Setup Mender Server
This integration prepares the device for Mender OTA flow through:
e DUT Provisioning
This integration validates the Mender OTA flow through:
* Mender System Update
* Mender Capsule Update

Note: EDK2 on the KV260 platform currently does not support capsule updates due to limitations in the EDK?2
firmware stack.

Cleans up the test environment for future test runs:
» Stop Mender Server
Mender environment variables:
* BRANCH: Specifies the Git branch tag for the Docker image used
* CAPSULE: Name of the capsule update image to be used.
* HOST_MACHINE_USER : Username of the host machine running Mender server
* MACHINE : Target platform machine name
* MENDER_SERVER_DIR : Mender server directory on the host machine
e MENDER _DUT_TEST_DIR : Mender test directory on DUT. It needs to be part of /data
e MENDER_SERVER_HTTPS_PORT : HTTPS port exposed to clients (default: 443)
* MENDER_SERVER_HTTP_PORT : HTTP port exposed to clients (default: 80)

44 Chapter 3. Developer Manual

Cassini

MENDER_SERVER_IP : 1P address of the the host machine running Mender server
MENDER _SERVER_NAME : Mender server name

MENDER_FW_GUID : GUID for the ESRT entry and the capsule payload.

MENDER_CAPSULE_VERSION : Version for the capsule payload. This is verified against ESRT entry version
after the update.

e MENDER_FW_VERSION : Current version for the ESRT entry.

3.6.2 Build with Mender Support

Cassini images include Mender client support by default. For more details, see Over-the-Air Update. It is recommended
to build with Developer Support.

These are the required environment variables, refer iere for more details.
e CAPSULE
* MACHINE
* MENDER_SERVER_DIR

Create a clean test directory

rm -Rf ${MENDER_SERVER_DIR}
mkdir -p ${MENDER_SERVER_DIR}/artifacts

Copy the generated .mender artifact to a designated directory for performing system update

cp ${BUILDDIR}/tmp/deploy/images/${MACHINE}/cassini-image-base-${MACHINE}.mender \
${MENDER_SERVER_DIR}/artifacts/${MACHINE } .mender

Copy the generated ${ CAPSULE)} artifact to a designated directory for performing capsule update

cp ${BUILDDIR}/tmp/deploy/images/${MACHINE}/${CAPSULE} \
${MENDER_SERVER_DIR}/artifacts/${MACHINE }.uefi.capsule

Important: The name of ${CAPSULE} depends on the target platform used to build the capsule.
* For corstonel000, the capsule name is typically $ {MACHINE}-v6.uefi.capsule
* For kv260, the capsule name is typically {{ MACHINE }}_fw.capsule

3.6.3 Setup Mender Server

The Mender server is run on a host machine OS which is formed of small container services. Pull the Mender utility
Docker image and launch the container on the host machine.

Note: The Mender server currently runs exclusively on x86_64 architecture, and its build process has been tested and
validated on Ubuntu 22.04 LTS.

These are the required environment variables, refer iere for more details.

* MENDER_SERVER_DIR

3.6. Mender Validation 45

Cassini

* MACHINE
* BRANCH

docker pull registry.gitlab.com/linaro/cassini/meta-cassini/mender-utility-image:$
—{BRANCH}
docker run --rm \

-v /var/run/docker.sock:/var/run/docker.sock \

-v ${MENDER_SERVER_DIR}:${MENDER_SERVER_DIR} \

-it registry.gitlab.com/linaro/cassini/meta-cassini/mender-utility-image:${BRANCH}

This opens a shell environment and these are the required environment variables, refer iere for more details.
* MENDER_SERVER_DIR
* MACHINE

MENDER_SERVER_IP

e MENDER_SERVER_HTTPS_PORT

e MENDER_SERVER_HTTP_PORT

Also, these are only required for full capsule update:
MENDER_FW_GUID

* MENDER_FW_VERSION

* MENDER CAPSULE_VERSION

¢ Configure the Mender Server :

export MENDER_SERVER_NAME="ms-${MACHINE}"

cd ${MENDER_SERVER_DIR}

cp -r /home/mender-server/. ${MENDER_SERVER_DIR}/
source ./mender_env_server.sh

source ./docker-compose-override.sh

¢ Start the Mender server :

docker compose --project-name "${MENDER_SERVER_NAME}" up -d --quiet-pull
docker compose --project-name "${MENDER_SERVER_NAME}" ps

¢ User Setup :

Create a test user for the Mender server UI/API

docker compose --project-name "${MENDER_SERVER_NAME}" exec useradm \
useradm create-user --username "${MENDER_SERVER_USERNAME}" \
--password "${MENDER_SERVER_PASSWORD}"

Authenticate using mender-cli

rmender—cli login \
--server "${MENDER_SERVER_URL_HTTPS_PORT}" \
--skip-verify \
--username "${MENDER_SERVER_USERNAME}" \
--password "${MENDER_SERVER_PASSWORD}"

46 Chapter 3. Developer Manual

Cassini

* Artifact Upload :
These are the requirements to perform a mender system update.

— Upload an unsigned mender artifact

(Cp ${MENDER_SERVER_DIR}/artifacts/${MACHINE}.mender ${MENDER_SERVER_DIR}/artifacts/$
—-{MACHINE}-unsigned.mender

mender-artifact modify -n unsigned-image ${MENDER_SERVER_DIR}/artifacts/${MACHINE}-
—unsigned.mender

mender-cli artifacts upload -k --server ${MENDER_SERVER_URL_HTTPS_PORT} ${MENDER_
-.SERVER_DIR}/artifacts/${MACHINE}-unsigned.mender

.

— Upload a signed mender artifact

(mender—artifact modify -n release-2 -k ${MENDER_SERVER_DIR}/keys/private.key $
—-{MENDER_SERVER_DIR}/artifacts/${MACHINE} .mender

mender-cli artifacts upload -k --server ${MENDER_SERVER_URL_HTTPS_PORT} ${MENDER_
. SERVER_DIR}/artifacts/${MACHINE}.mender

These are the requirements to perform a mender capsule update.

— Upload a compatible mender capsule

Set GUID and versions

export MENDER_FW_GUID=<guid>

export MENDER_FW_VERSION=<old-version>
export MENDER_CAPSULE_VERSION=<new-version>

mender-artifact write module-image \
-T uefi-capsule \
-n compatible-capsule-update \
-0 ${MENDER_SERVER_DIR}/artifacts/${MACHINE}-compatible-capsule-update.mender \
-f ${MENDER_SERVER_DIR}/artifacts/${MACHINE}.uefi.capsule \
-t ${MACHINE} \
-k ${MENDER_SERVER_DIR}/keys/private.key \
--provides "uefi-firmware.${MENDER_FW_GUID}.version:${MENDER_CAPSULE_VERSION}" \
--depends "uefi-firmware.${MENDER_FW_GUID}.version:${MENDER_FW_VERSION}"

mender-cli artifacts upload \
-k --server ${MENDER_SERVER_URL_HTTPS_PORT} \
"${MENDER_SERVER_DIR}/artifacts/${MACHINE}-compatible-capsule-update.mender"

&

These are the requirements to perform a mender rollback capsule update.

— Use capsule-tool.py to generate a tampered capsule

${MENDER_SERVER_DIR}/systemready-scripts/capsule-tool.py --tamper \
--output ${MENDER_SERVER_DIR}/artifacts/tampered-${MACHINE}.uefi.capsule \
${MENDER_SERVER_DIR}/artifacts/${MACHINE }.uefi.capsule

— Upload a compatible rollback mender capsule

Set GUID and versions
export MENDER_FW_GUID=<guid>
export MENDER_FW_VERSION=<old-version>

(continues on next page)

. Mender Validation 47

Cassini

(continued from previous page)

export MENDER_CAPSULE_VERSION=<new-version>

mender-artifact write module-image \

-T uefi-capsule \

-n compatible-rollback-capsule-update \

-0 ${MENDER_SERVER_DIR}/artifacts/${MACHINE}-compatible-rollback-capsule-update.
—mender \

-f ${MENDER_SERVER_DIR}/artifacts/tampered-${MACHINE}.uefi.capsule \

-t ${MACHINE} \

-k ${MENDER_SERVER_DIR}/keys/private.key \

--provides "uefi-firmware.${MENDER_FW_GUID}.version:${MENDER_CAPSULE_VERSION}" \

--depends "uefi-firmware.${MENDER_FW_GUID}.version:${MENDER_FW_VERSION}"

mender-cli artifacts upload \
-k --server ${MENDER_SERVER_URL_HTTPS_PORT} \
"${MENDER_SERVER_DIR}/artifacts/${MACHINE}-compatible-rollback-capsule-update.
—mender"

To check the uploaded artifacts

[mender—cli artifacts list -k --server ${MENDER_SERVER_URL_HTTPS_PORT}

3.6.4 DUT Provisioning

This step is performed on the Device Under Test (DUT) to enable Mender client-server communication.

Requirements:

* Running Mender server

These are the required environment variables, refer iere for more details.

* MENDER _DUT_TEST _DIR
HOST_MACHINE_USER
MENDER_SERVER DIR
MENDER_SERVER NAME
MENDER_SERVER _IP
MENDER_SERVER HTTPS_PORT
e MENDER SERVER HTTP_PORT

Login and switch to root user

[sudo su -

Create a working directory for Mender testing

mkdir -p ${MENDER_DUT_TEST_DIR}
chown -R cassini:cassini ${MENDER_DUT_TEST_DIR}

cd

${MENDER_DUT_TEST_DIR}

Copy Mender helper scripts and certificates from the host machine to the DUT

48

Chapter 3. Developer Manual

Cassini

scp -o "StrictHostKeyChecking no" ${HOST_MACHINE_USER}@${MENDER_SERVER_IP}:${MENDER_
—»SERVER_DIR}/mender_%*.sh ${MENDER_DUT_TEST_DIR}

scp -o "StrictHostKeyChecking no" ${HOST_MACHINE_USER}@${MENDER_SERVER_IP}:${MENDER_
—~SERVER_DIR}/compose/certs/mender.crt ${MENDER_DUT_TEST_DIR}

Note: This step is required for corstonel@00-fvp machine to prevent unexpected shutdown during the preparation
of mender provisioning.

timedatectl

sudo systemctl restart systemd-timesyncd.service
timedatectl

sudo ip link set eth® down

Place the Mender server certificate in the correct location and adjust the permissions. Ensure the helper scripts are
executable.

cp ${MENDER_DUT_TEST_DIR}/mender.crt /etc/mender
chmod 644 /etc/mender/mender.crt
chmod +x ${MENDER_DUT_TEST_DIR}/mender_%*.sh

Enable helper functions to perform mender testing.

[source ${MENDER_DUT_TEST_DIR}/mender_test_helper.sh]

Restart Mender-related services to apply changes.

systemctl restart mender-authd
systemctl restart mender-updated

Note: This step is required for corstonel®00-fvp machine to prevent unexpected shutdown during the preparation
of mender provisioning.

[sudo ip link set eth® up

Run provisioning script to register DUT with the Mender server.

[provi sion_device

3.6.5 Mender System Update

Once the Mender server is running and the Device Under Test (DUT) is provisioned, the next step is to deliver your
update payloads to the server for performing system update on DUT.

Requirements:
* Mender artifact
* Artifacts are uploaded
* Running Mender server

* Device Under Test (DUT) is provisioned

3.6. Mender Validation 49

Cassini

This section covers two different scenarios.
 Signed artifacts for secure deployments.
» Unsigned artifact to demonstrate failure deployments.
e Setup :
Copy artifact key from the host machine to the DUT.

scp -o "StrictHostKeyChecking no" ${HOST_MACHINE_USER}@${MENDER_SERVER_IP}:${MENDER_
—.SERVER_DIR}/keys/artifact-verify-key.pem ${MENDER_DUT_TEST_DIR}

Install the artifact key to validate the incoming mender artifacts which are deployed from the Mender server.

[cp ./artifact-verify-key.pem /etc/mender J

* Deploying Updates :

To trigger an unsigned system update, we deploy an unsigned artifact.

check_for_unsigned_update

[

create_artifact_deployment unsigned-image ’

Expected outcome:
— The device rejects the artifact due to missing or invalid signature.
— This also validates proper enforcement of security policies.

To trigger a signed system update, we deploy a signed artifact.

create_artifact_deployment release-2
wait_for_signed_update

0

Expected outcome:
— The artifact passes signature validation.
— The Mender client downloads and installs the update.

— The device reboots upon successful deployment.

Note: Please allow up to 30 minutes for the DUT to automatically reboot after running these commands.

¢ Final Verification :

Final check to confirm that the signed system update was successfully completed and acknowledged by DUT
to the Mender server.

This step ensures the DUT, is able to securely communicate with the correct Mender server that was used during
the provisioning and deployment steps.

Once the DUT has rebooted after applying the mender system update login and switch to root user:

[sudo su - }

These are the required environment variables, refer sere for more details.
— MENDER DUT_TEST _DIR
— MENDER _SERVER_HTTPS_PORT

50 Chapter 3. Developer Manual

Cassini

— MENDER_SERVER_HTTP_PORT
— MENDER_SERVER_IP
— MENDER SERVER_NAME

cd ${MENDER_DUT_TEST_DIR}

cp ${MENDER_DUT_TEST_DIR}/artifact-verify-key.pem /etc/mender
cp ${MENDER_DUT_TEST_DIR}/mender.crt /etc/mender

chmod 644 /etc/mender/mender.crt

Note: This step is required for corstone1000-£fvp machine to prevent unexpected shutdown during the vali-

dation of mender system update.

[sudo ip link set eth® down

Setup environment variables and load helper functions used for final validation.

[source ./mender_test_helper.sh

Restart Mender authentication service to reinitialize secure communication.

[systemctl restart mender-authd

Note: This step is required for corstonel1®00-£fvp machine to prevent unexpected shutdown during the vali-

dation of mender system update.

[sudo ip link set eth® up

Finally, check to confirm the signed update was applied successfully.

[check_for_signed_update

3.6.6 Mender Capsule Update

Note: Before executing mender capsule updates, ensure that the firmware is capable of handling UEFI capsules.

Additionally, BootOrder needs to be set once to prioritize booting from EFI/UpdateCapsule before any updates.

For example, via these steps in U-Boot shell:

Add a new boot option: Bootl®01 that boots from

EFI/UpdateCapsule

mmc <device-index>:<partition> should be the ESP partition

where EFI/UpdateCapsule is located

efidebug boot add -b 1001 cap mmc <device-index>:<partition> EFI/UpdateCapsule

Prepend the new boot option to the current order

<existing_boot_options> can be checked via

" efidebug boot order command without any arguments.
efidebug boot order 1001 <existing_boot_options>

3.6. Mender Validation

51

Cassini

Once the Mender server is running and the Device Under Test (DUT) is provisioned, the next step is to deliver your
update payloads to the server for performing capsule update on DUT

Requirements:
* Mender artifact
* Artifacts are uploaded
* Running Mender server
* Device Under Test (DUT) is provisioned
* Copy artifact key on DUT
This section covers only the compatible capsule scenario.
* Update module
The uefi-capsule update module is part of Cassini image by default.
* Deploying Updates :

To trigger an compatible rollback capsule update, we deploy a compatible-rollback-capsule-update.

[create_arti fact_deployment "compatible-rollback-capsule-update"

Expected outcome:
— The mender capsule passes signature validation.
— The DUT downloads the artifact by checking the compatibility.
— The update module will install the capsule to /boot/efi/EFI/UpdateCapsule directory.
— The DUT will be rebooted automatically.
— The firmware will handle capsule update automatically after this modification.
— The firmware detects that the capsule is tampered and rejects the update.

— After booting into Linux, the update module will verify new ESRT table against the received capsule in-
formation.

— But ESRT entries do not match the expected versions, causing the update to fail.
— Mender triggers an automatic rollback and the DUT will be rebooted automatically.

— On the next boot, the update module runs rollback verification by comparing current ESRT entries with the
previous versions.

— Upon success, these logs will be visible in journalctl -u mender-updated:

Rollback succeeded for <guid>
Rollback succeeded for all firmware entries

To trigger an compatible capsule update, we deploy a compatible-capsule-update.

[create_arti fact_deployment "compatible-capsule-update"

Expected outcome:
— The mender capsule passes signature validation.

— The DUT downloads the artifact by checking the compatibility.

52 Chapter 3. Developer Manual

Cassini

The update module will install the capsule to /boot/efi/EFI/UpdateCapsule directory.

The DUT will be rebooted automatically.

The firmware will handle capsule update automatically after this modification.

After booting into Linux, the update module will verify new ESRT table against the received capsule in-
formation.

Upon success, these logs will be visible in journalctl -u mender-updated:

Update succeeded for <guid>
Update succeeded for all capsule payloads

3.6.7 Stop Mender Server

These are the required environment variables, refer here for more details.
* MENDER SERVER_NAME
* MENDER SERVER_DIR

Tear down any previous Mender server containers and remove mender-server directory.

docker compose --project-name "${MENDER_SERVER_NAME}" down -v --remove-orphans
rm -rf ${MENDER_SERVER_DIR}

3.7 Building the documentation

The Cassini project is currently configured so that Read the Docs builds the project documentation using Ubuntu 22.04
and Python 3.10.

The sources for the documentation are found in the documentation folder. To setup the host to build the documentation
locally, install the required packages on the host as follows:

[pythonS -m pip install -U -r documentation/requirements.txt

To build and generate the documentation in html format, run:

[sphinx—build -b html -a -W documentation public

To render and explore the documentation, simply open meta-cassini/public/index.html in a web browser.

3.7. Building the documentation 53

Cassini

54 Chapter 3. Developer Manual

CHAPTER
FOUR

CODELINE MANAGEMENT

The Cassini project is developed and released based on Yocto’s release branch process. This strategy allows us to
make Major, Minor and Point/Patch Releases based on upstream stable branches, reducing the risk of having build and
runtime issues.

4.1

Yocto Release Process Overview

April October April

master or main

& & & &) &)

<codename-a=

& & &) &l]
) & & & &)

<codename-b=

<codename-c>

&) Release tags

The diagram above gives an overview of the Yocto branch and release process:

Development happens primarily in the main (or master) branch.
The project has a major release roughly every 6 months where a stable release branch is created.

Each major release has a codename which is also used to name the stable release branch (e.g. kirkstone, scarth-
£ap).

Once a stable branch is created and released, it only receives bug fixes with minor (point) releases on an unsched-
uled basis.

The goal is for users and 3rd parties layers to use these codenamed branches as a means to be compatible with
each other.

For a complete description of the Yocto release process, support schedule and other details, see the Yocto Release
Process documentation.

55

https://docs.yoctoproject.org/ref-manual/release-process.html
https://docs.yoctoproject.org/ref-manual/release-process.html

Cassini

4.2 Cassini Branch and Release Process

October April October
April (Yocto codename-1 (Yocto LTS codename-2 (Yocto codename-3
Release) Release) Release)
main s

<codename-1=
a 4 a

L J

<codename-2 LTS=
&J &J

<codename-3>

& 4 QL A

] Release tags f Fixes on stable branch —" Patches between branches

Cassini’s branch and release process is based on the Yocto release process. The following sub-sections describe in
more details the branch strategy for Cassini’s development and release process.

4.2.1 Cassini main branch

» Represented by the green line on the diagram above.

* The repository’s main branch is meant to be compatible with master or main branches from Poky and 3rd party
layers.

* meta-cassini is actively developed on this main branch.

4.2.2 Cassini release branches

* Represented by the blue line on the diagram above.
* A new release branch in Cassini is setup for each new Yocto release using the Yocto codename the branch targets.
* Hot fixes in the main branch are back ported to the release branch if it is relevant and applicable.

* Release branches are currently maintained not much longer than a Yocto release period (~7 months).

56 Chapter 4. Codeline Management

Cassini

4.2.3 Cassini release tags

* Cassini is tagged using the version format v<Major>.<Minor>.<Patch>.
» Tags are always applied to commits from the release branch.

* The Major version is incremented for LTS Yocto releases.

* The Minor version is incremented for stable Yocto releases that is not LTS.

* Patch releases are mainly used for hot fixes, which are first merged into the main branch and may then be back-
ported to stable or LTS branches.

* Both Major and Minor releases may receive fixes, improvements and new features while Patch releases only
receive fixes. Poky and 3rd party layers release/stable branches might be updated and pinned.

4.2. Cassini Branch and Release Process 57

Cassini

58 Chapter 4. Codeline Management

CHAPTER
FIVE

CONTRIBUTING

We welcome contribution from everyone via the meta-cassini public Gitlab repository: https://gitlab.com/Linaro/
cassini/meta-cassini. For general introduction about Cassini distribution, refer to /ntroduction.

5.1 License

The Cassini distribution is released under License.

Please use an SPDX license identifier in every source file following the recommendations to make it easier for users to
understand and review licenses.

/7‘:
* SPDX-License-Identifier: MIT
:‘:/

5.2 Contributing to Cassini distribution

This project uses the GitLab project forking workflow.

Every commit must have at least one Signed-off-by: line from the committer to certify that the contribution is made
under the terms of the Developer's Certificate of Origin.

The full text of Developer's Certificate of Origin can be found in sign-your-work-the-developer-s-certificate-
of-origin. Due to the significance of the Developer's Certificate of Origin, part of it is copied below.

The sign-off is a simple line at the end of the explanation for the
patch, which certifies that you wrote it or otherwise have the right to
pass it on as an open-source patch. The rules are pretty simple: if you
can certify the below:

Developer's Certificate of Origin 1.1
AAAAAAAAAAANAAAAAAAAANAAAAAANAAAANAAAAAAANAAN

By making a contribution to this project, I certify that:
(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license

indicated in the file; or

(continues on next page)

59

https://gitlab.com/Linaro/cassini/meta-cassini
https://gitlab.com/Linaro/cassini/meta-cassini
https://spdx.org/licenses/
https://spdx.github.io/spdx-spec/v2.2.2/using-SPDX-short-identifiers-in-source-files/#e2-format-for-spdx-license-identifier
https://docs.gitlab.com/ee/user/project/repository/forking_workflow.html
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#sign-your-work-the-developer-s-certificate-of-origin
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#sign-your-work-the-developer-s-certificate-of-origin

Cassini

(continued from previous page)

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

then you just add a line saying::

Signed-off-by: Random] Developer <random@developer.example.org>

using your real name (sorry, no pseudonyms or anonymous contributions.)

5.3 Commit guidelines

Commits and patches added should follow the OpenEmbedded patch guidelines with the following additions.

The component being changed in the shortlog should be prefixed with the layer name (without meta-), for example:
cassini-config: Decrease frobbing level
cassini-distro: Enable foobar v2
cassini-doc: Added foobar v2 documentation

While specific to the Linux kernel, refer also to the Linux kernel patch guidance. In the above, pay particular attention
to the guidance on how to make your changes easy to review.

5.3.1 Describe your changes

Describe the problem you are fixing or the feature you are adding. The commits themselves show how the code is being
changed so the commit messages should explain to the reviewer (in plain English) what is being changed and why.

60 Chapter 5. Contributing

https://www.openembedded.org/wiki/Commit_Patch_Message_Guidelines
https://docs.kernel.org/process/submitting-patches.html

Cassini

5.3.2 Separate your changes

Separate each logical change into a separate commit. Each commit should implement a single, cohesive idea which
should be justifiable on its own merits. Separate complex commits by dividing large problems or features into smaller
ideas which can be applied one at a time. A commit which makes similar changes to multiple files should be separated
from a commit which makes an unrelated change to a single file.

5.3.3 Commit messages guidelines

Commit messages should follow the guidelines below, for reasons explained by Chris Beams in How to Write a Git
Commit Message:

The commit subject and body must be separated by a blank line.

The commit subject must start with a capital letter.

The commit subject must not be longer than 72 characters.

The commit subject must not end with a period.

The commit body must not contain more than 72 characters per line.

Commits that change 30 or more lines across at least 3 files should describe these changes in the commit body.

Use issues and merge requests’ full URLSs instead of short references, as they are displayed as plain text outside
of GitLab.

The merge request should not contain more than 10 commit messages.

The commit subject should contain at least 3 words.

Important notes:

If the guidelines are not met, the MR may not pass the Danger checks.

Consider enabling Squash and merge if your merge request includes “Applied suggestion to X files” commits, so
that Danger can ignore those.

The prefixes in the form of [prefix] and prefix: are allowed (they can be all lowercase, as long as the message
itself is capitalized). For instance, danger: Improve Danger behavior and [API] Improve the labels endpoint are
valid commit messages.

Why these standards matter

1.
2.

Consistent commit messages that follow these guidelines make the history more readable.

Concise standard commit messages helps to identify breaking changes for a deployment or ~’main:broken”
quicker when reviewing commits between two points in time.

5.3. Commit guidelines 61

https://cbea.ms/git-commit/
https://cbea.ms/git-commit/
https://gitlab.com/Linaro/cassini/meta-cassini/-/blob/main/Dangerfile
https://docs.gitlab.com/ee/user/project/merge_requests/squash_and_merge.html

Cassini

Commit message template

Example commit message template that can be used on your machine that embodies the above (guide for how to apply
template):

(If applied, this commit will...) <subject> (Max 72 characters)
[<---- Using a Maximum Of 72 Characters ———=>

Explain why this change is being made
[<---- Try To Limit Each Line to a Maximum Of 72 Characters ————>

Provide links or keys to any relevant tickets, articles or other resources
Use issues and merge requests' full URLs instead of short references,
as they are displayed as plain text outside of GitLab

H

--- COMMIT END ---

H

Remember to
Capitalize the subject line
Use the imperative mood in the subject line
Do not end the subject line with a period
Subject must contain at least 3 words
Separate subject from body with a blank line
Commits that change 30 or more lines across at least 3 files should
describe these changes in the commit body
Use the body to explain what and why vs. how
Can use multiple lines with "-" for bullet points in body
For more information: https://cbea.ms/git-commit/

HFHoR O T W OH W R R R W

H

5.4 Changelog entries

This section contains instructions for when and how to generate a changelog entry file, as well as information and
history about our changelog process.

5.4.1 Overview

Each bullet point, or entry, in our CHANGELOG.md file is generated from the subject line of a Git commit. Commits
are included when they contain the Changelog Git trailer. When generating the changelog, author and merge request
details are added automatically.

The Changelog trailer accepts the following values:
* feature: New feature added/enabled
* bug: Bug fix
* deprecated: New deprecation
* removed: Feature removal
* security: Security fix

* performance: Performance improvement

62 Chapter 5. Contributing

https://codeinthehole.com/tips/a-useful-template-for-commit-messages/
https://codeinthehole.com/tips/a-useful-template-for-commit-messages/
https://gitlab.com/Linaro/cassini/meta-cassini/-/blob/main/CHANGELOG.md
https://git-scm.com/docs/git-interpret-trailers

Cassini

e other: Other

An example of a Git commit to include in the changelog is the following:

Update git vendor to gitlab

Now that we are using gitaly to compile git, the git version isn't known
from the manifest, instead we are getting the gitaly version. Update our
vendor field to be "gitlab’ to avoid cve matching old versions.

Changelog: changed
MR: https://gitlab.com/foo/bar/-/merge_requests/123

Overriding the associated merge request

GitLab automatically links the merge request to the commit when generating the changelog. If you want to override
the merge request to link to, you can specify an alternative merge request using the MR trailer:

Update git vendor to gitlab

Now that we are using gitaly to compile git, the git version isn't known
from the manifest, instead we are getting the gitaly version. Update our
vendor field to be “gitlab’ to avoid cve matching old versions.

Changelog: changed
MR: https://gitlab.com/foo/bar/-/merge_requests/123

The value must be the full URL of the merge request.

5.4.2 What warrants a changelog entry?

* Security fixes must have a changelog entry, with Changelog trailer set to security.

* Any user-facing change must have a changelog entry. Example: “meta-cassini now supports AWS Greengrass
as a cloud option”

* A fix for a regression introduced and then fixed in the same release (such as fixing a bug introduced during a
release candidate) should not have a changelog entry.

* Any developer-facing change (such as refactoring, technical debt remediation, or test suite changes) should not
have a changelog entry.

* Any contribution from a community member, no matter how small, may have a changelog entry regardless of
these guidelines if the contributor wants one.

¢ Any experimental changes should not have a changelog entry.

* An MR that includes only documentation changes should not have a changelog entry.

5.4. Changelog entries 63

Cassini

5.4.3 Writing good changelog entries
A good changelog entry should be descriptive and concise. It should explain the change to a reader who has zero
context about the change. If you have trouble making it both concise and descriptive, err on the side of descriptive.
* Bad: Use newest version.
* Good: Updated to latest U-Boot version to get FF-A support.
The first example provides no context of where the change was made, or why, or how it benefits the user.
* Bad: Update syntax.
* Good: Update bitbake files to new append syntax to allow use with > hardknott yocto versions.
Again, the first example is too vague and provides no context.
* Bad: Fixes and Improves , usage in config files.
* Good: Fix parsec config file so that parsec can encrypt large payloads from clients.

The first example is too focused on implementation details. The user doesn’t care that we changed comma’s they care
about the end result of those changes.

e Bad: Extended parsec input buffer for encrypt operations
* Good: Allow parsec to encrypt message up to 512Kb in size when using incremental encryption API’s

The first example focuses on how we fixed something, not on what it fixes. The rewritten version clearly describes the
end benefit to the user (larger possible data sets), and when (calling the incremental encryption API’s).

Use your best judgement and try to put yourself in the mindset of someone reading the compiled changelog. Does this
entry add value? Does it offer context about where and why the change was made?

5.4.4 How to generate a changelog entry

Git trailers are added when committing your changes. This can be done using your text editor of choice. Adding the
trailer to an existing commit requires either amending to the commit (if it’s the most recent one), or an interactive rebase
using git rebase -i.

To update the last commit, run the following:

[git commit --amend]

You can then add the Changelog trailer to the commit message. If you had already pushed prior commits to your remote
branch, you have to force push the new commit:

[git push -f origin your-branch-name J

To edit older (or multiple commits), use git rebase -i HEAD~N where N is the last N number of commits to rebase.
Let’s say you have 3 commits on your branch: A, B, and C. If you want to update commit B, you need to run:

[git rebase -i HEAD-~2 J

This starts an interactive rebase session for the last two commits. When started, Git presents you with a text editor with
contents along the lines of the following:

pick B Subject of commit B
pick C Subject of commit C

64 Chapter 5. Contributing

Cassini

To update commit B, change the word pick to reword, then save and quit the editor. Once closed, Git presents you with
a new text editor instance to edit the commit message of commit B. Add the trailer, then save and quit the editor. If all
went well, commit B is now updated.

For more information about interactive rebases, take a look at the Git documentation.

5.5 Submitting changes

Thank you for your interest in contributing to Cassini distribution. To contribute, follow the instructions and ensure
you adhere to commit guidelines.

5.6 Merge criteria

* The merge request must receive at least 2 approvals from Cassini distro maintainers
* meta-cassini pipelines are passed

* No regression on code coverage

5.5. Submitting changes 65

https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History

Cassini

66 Chapter 5. Contributing

CHAPTER
SIX

CONTINUOUS INTEGRATION AND DEVELOPMENT (CI/CD)

6.1 Introduction

Project Cassini defines a GitLab CI/CD pipeline to help developers and reviewers by detecting issues at an early stage
when a merge request is created.

To create a merge request on this project the user needs to be a member of the project and refer to Contributing for
further details.

6.1.1 Overview

The following diagram illustrates brief overview of Project Cassini automated testing.

¢ External Tools:

These tools are used by jobs in the pipeline and built in Docker containers ensuring running them in confined
environment.

— Packages:
These are Debian packages provided from ubuntu.com
- jfrog:
The jfrog tool is provided from jfrog.io to communicate with artifactory.
— SCT parser:
The SCT parser is used to parse test results.
* External Images:

External images used directly by the pipeline are pulled from the following sources:

67

https://gitlab.arm.com/systemready/edk2-test-parser

Cassini

— Base Image:

The Docker Hub is a service provided by Docker for finding and sharing container images. The images are
some of the most secure images on Docker Hub and official released versions which can be used as a base
image for usage.

— gitlab.com:
These are prebuilt images provided by gitlab.com to include jobs like static analysis.
- Quay:

A buildah image is provided by Red Hat (via Quay) to build custom container images. These images, which
are used in later stages of the pipeline, are stored in the GitLab Registry.

* GitLab CI/CD:

CI/CD is a GitLab feature which validates, request infrastructure for, and runs a GitLab pipeline using Container
Registry.

— GitLab pipelines:
See Gitlab pipelines
— Container Registry:

This stores custom container images which are used by some pipeline jobs.

6.1.2 Architecture

The following diagram illustrates various components involved when the user raises a merge request for changes to be
accepted for Project Cassini.

The different sections are described below:
¢ Pipeline configuration:
This consists of further components:
— Dangerfile:

Configures and includes a danger-review job that is used to perform a variety of automated checks on the
code under test.

Danger is a Ruby Gem that runs in the CI environment. It only posts one comment and updates its content
on subsequent danger-review runs.

- .gitlab-ci.yml:

The meta-cassini repository defines the configuration of pipeline, when user raises merge request for
changes to be accepted.

68 Chapter 6. Continuous integration and development (CI/CD)

https://docs.gitlab.com/ee/ci/pipelines/

Cassini

— Gitlab Templates:

These provide templates when included for the project to enable/configure tools and functionalities for the
pipelines which can be referred in GitLab Templates.

— .pre-commit-config.yaml:

Configures pre-commit hooks that invokes a program that parses a config file and analyzes files, potentially
producing formatted output representing issues in those files.

Please refer related documentation in Code Quality .

* GitLab CI/CD:

A brief overview can be found in GitLab pipeline.

This consists of further components:

— GitLab Runners:

GitLab Runner is an application that works with GitLab CI/CD to run jobs in a pipeline.

— Container Registry:

The Container Registry holds the custom images required for specific pipeline jobs, which includes:

*
*k

*k

*
*

¢ Testing:

DangerBot Image

Code Climate plugins

FVP Image

IDT (IoT Device Tester) Greengrass Image
Parsec OpenSSL Image

Mender Utility Image

LAVA Test Image

Utility Image

This consists of further components:

— LAVA test framework:

The LAVA provides the capabilities to test the built images for Cassini distribution on supported target
platforms.

* Artifactory:

This provides a database to store results from the LAVA test framework.

6.2 GitLab Templates

The GitLab Templates project defines common CI/CD configuration elements which can be included in other GitLab
projects. The components used in the Cassini CI/CD pipelines are:

* Changelog:

This updates the CHANGELOG.md file when a merge request modifies CASSINI_VERSION in cassini-
release.yml. This will cause a new commit added to the MR and cancel/re-trigger the pipeline.

6.2. GitLab Templates 69

https://validation.linaro.org/
https://gitlab.com/Linaro/cassini/gitlab-templates

Cassini

* Child pipelines:
This creates the merge, trigger, and collate-results jobs for the child pipeline.
¢ Workflow:

This defines some common rules to control when CI pipelines should and shouldn’t run. For example, don’t run
the pipeline for pushes to a branch when there is already an MR open for that branch

* Danger review:

This job runs the danger-bot on merge request pipelines to report issues early.
* Docker images:

Set up Docker images with a predefined set of configurations to be used by the pipeline using buildah.
« Static analyzer:

Sets up Sast (Security analyzer), and Code quality (Code quality analyzer) and generates Code quality HTML
reports using pre-commit hooks.

* Lava testing:
Setup to submit jobs to LAVA Test framework and retrieve results when they are complete.
* Auto release:

These jobs create a GitLab release and attach release notes based on changes to the Changelog. The release note
is generated from the git commit history and requires knowledge of the current package version number.

» Kas setup:

Set up the required configurations for building a Yocto-based project using kas.

6.3 Code Quality

The CI/CD pipeline uses GitLab’s Code Quality feature to perform static analysis of code, scripts, and documentation.

6.3.1 Usage

Code quality tools are configured as hooks in .pre-commit-config.yaml, sourced from official repositories. See the
pre-commit and pre-commit hooks references for details on available hook types and usage.

6.3.2 Hooks

* cspell:
Runs the cspell spelling checker over files in a project.
* oelint-adv:

This hook runs an opinionated linter (see oelint-adv) over bitbake recipes and checks them for conformance to
the OpenEmbedded style guide.

¢ shell-check:

Gives warnings and suggestions for bash/sh shell scripts (see shell-check).

70 Chapter 6. Continuous integration and development (CI/CD)

https://pre-commit.com/
https://pre-commit.com/hooks.html
https://github.com/streetsidesoftware/cspell-cli
https://github.com/skycaptain/pre-commit-oelint-adv
https://docs.yoctoproject.org/dev/contributor-guide/recipe-style-guide.html
https://github.com/koalaman/shellcheck-precommit

Cassini

¢ flake8:

Runs Python code style and quality checks, including PEP 8 compliance, import ordering, and other configurable
rules. Provides clear feedback on style violations, unused variables, and potential code issues (see flake8).

¢ yamllint:

Validates the structure and syntax of yaml/yml files (see yamllint).

6.4 GitLab pipeline

A brief overview of GitLab pipeline

6.4.1 Parent pipeline

This pipeline is responsible for setup, configuring tools in the Docker images, and performing static analysis (Code
Quality, Danger-Review, secret detection, and container scanning).

* .pre:

— Build the Docker images required for the project (For example debian-buster OS) for different architectures
and push them to the registry. This involves IDT Greengrass, LAVA and Utility Docker (arm64, x86_64)
images.

— Pull the generated Docker images and config and create a manifest for LAVA and Utility usage.
— Run danger-bot for reviewing and report issues early.
— Regenerate the changelog when the project version number is changed.
e Setup:
— Setup stage to ensure all the configurations have a valid yaml file.
— Merge all the jobs into one file which defines each stage of the child pipeline.
* Build:
— Build the documentation.
— Create a child pipeline.
* Test:

Collate-results from child pipeline.

Detect any secrets present in the codebase.

Test the code quality using pre-commit hooks.

Generate code quality report using pre-commit hooks.

6.4. GitLab pipeline 71

https://github.com/pycqa/flake8
https://github.com/adrienverge/yamllint

Cassini

— Run Gitlab semgrep analyzer.
* Release:

— Creating the release and notes.

6.4.2 Child pipeline

This pipeline is responsible to build cassini distro images, setup, submit and report back results from the LAVA test
framework perform.

¢ Setup:
— Update external repositories that are required for Cassini distribution.
— Extract the required FVP version details from the codebase.
* Build:
— Image build for all supported platforms depending on rules or changes to the codebase.

— Check if Cassini distro is compatible with layers definitions, this is based on each platform and multiple
layers included in the distro.

o Test:

Install the required FVP in a Docker image.

Prepare the built Cassini distro images for LAVA test framework.

Submit jobs to the LAVA test framework.

Wait for event from LAVA test framework for completion and return to parent pipeline
* Cleanup:

— Clean the sstate cache and download directory which is older than specific number of days.

6.5 Amazon Web Services (AWS) loT Device Tester (IDT)

AWS IdT Device Tester (IDT) is a downloadable testing framework that helps us validate IoT devices, see AWS IoT
Device Tester for Greengrass V2.

The IDT is installed with tools and configured in a Docker container image with required credentials of AWS account
for testing Greengrass on a device.

These credentials are required by aws-cli to perform necessary setup for Device Under Test (DUT) and needs to be
configured as GitLab variables to be used by GitLab pipelines:

* AWS_ACCESS_KEY ID

72 Chapter 6. Continuous integration and development (CI/CD)

https://docs.aws.amazon.com/greengrass/v2/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-tester-for-greengrass-ug.html

Cassini

» AWS_SECRET_ACCESS_KEY
* AWS_DEFAULT _REGION

The Docker container provisions the Device to work with AWS and IDT and generates a config file, which is used
on the DUT to restart the Greengrass service. Then IDT runs the configured required tests and uploads to artifactory
(optional).

6.5.1 Overview

A brief overview of IDT setup and running it on Cassini GitLab CI/CD.
The IoT Device Tester is setup as follows:
e IDT Setup :

The idt_setup.sh should be executed manually once to setup the project to use IoT Device Tester with AWS. It
creates the required AWS Identity and Access Management (IAM) role, Internet of Things (IoT) Token exchange
role, IoT role alias, IoT Thing Group and policies for IDT. The following parameters needs to be configured:

GG_HOME : Home directory of Greengrass service

IDT_ROLE : 1AM role

IDT_ROLE_POLICY : TAM role policy
IDT_ROLE_SESSION_DURATION : 1AM role session timeout duration
IOT_TE_ROLE : 1oT Token exchange role

IOT_TE_ROLE_POLICY : IoT Token exchange policy
IOT_TE_ROLE_ALIAS : 1oT Token exchange role alias
IOT_TE_ROLE_POLICY_ALIAS : 1oT Token exchange policy alias
IOT_THING_POLICY : IoT thing policy

IOT_THING_GROUP : 1dT thing group
AWS_BOUNDARY_POLICY : Boundary policy for IAM or IoT role (optional).

The IoT Device Tester is run in LAVA with the following steps:
* Provision DUT:

This step is executed on IDT Docker container image for every DUT with unique IOT_THING_NAME. Depending
on the available Greengrass plugin, a tool is used to generate the signed RSA key and a certificate to work with
AWS for IDT on DUT as follows:

1. parsec-tool should be used in case of Parsec plugin.

2. tpm2_ptool should be used in case of Pkcsl1 plugin (cassini-tpm feature is enabled). The tpm2-pkesl11
store directory is /opt/tpm2-pkcs11/ by default in Cassini builds.

6.5. Amazon Web Services (AWS) loT Device Tester (IDT) 73

Cassini

Further, these parameters needs to be configured as GitLab variables to be used by GitLab pipelines when setup
was performed:

- GG_HOME
10T_THING_GROUP
I0T_THING_POLICY

I0T_TE ROLE _POLICY_ALIAS
I0T_TE_ROLE_ALIAS

The provisioning script and all the following scripts need an extra environment variable:
— GG_PROVIDER

This parameter defines the Greengrass plugin that will be used and can be one of 2 values:
1. Parsec.
2. TPM (in case cassini-tpm is enabled).

The generated configuration is then transferred to DUT and the Greengrass service is restarted with folder per-
missions set.

¢ Configure IDT for DUT:

This step is used to configure IDT installed on Docker container image with details of DUT and require the
following:

— THING_IP : 1P address of DUT
— TARGET_MACHINE : Machine name of DUT
— TARGET _PORT : Port number to be used (default 22)
* Assume role and run IDT:
After performing, provisioning and configuring IDT. The following parameters are required to run the tests:
— TEST_SESSION_NAME : Test session name (optional, see)
— TEST TIMEOUT _MULTIPLIER : Set to extend the default timeout for tests

This step will attempt to assume IDT_ROLE before running the IDT test suite. If this fails, the test suite
will run with the permissions granted to the AWS user. These parameters needs to be configured as GitLab
variables to be used by GitLab pipelines:

e IDT_ROLE
e IDT_ROLE_SESSION_DURATION
¢ Cleanup:

This is used to perform cleanup of IOT_THING_NAME which represents the DUT name effectively when IDT
tests have completed on CI/CD.

74 Chapter 6. Continuous integration and development (CI/CD)

CHAPTER
SEVEN

LICENSE

The software is provided under the MIT license (below).

Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

7.1 SPDX Identifiers

Individual files contain the following tag instead of the full license text.

[SPDX—License—Identifier: MIT]

This enables machine processing of license information based on the SPDX License Identifiers that are here available:
http://spdx.org/licenses/

75

http://spdx.org/licenses/

Cassini

76 Chapter 7. License

CHAPTER
EIGHT

RELEASE NOTES

8.1 v1.0.0

8.1.1 Known Issues or Limitations

All platforms

* This release uses Docker CE 23.0.2 which is vulnerable to CVE-2023-3750 and CVE-2023-2700. This release
is therefore superseded by v1.0.1 which updates to Docker Moby v24.0.5. The update fixes the CVEs, and fixes
a regression.

» The Parsec service configuration in this release enables detailed error trace which could include potentially
sensitive information (key names and policies).

* There is a performance issue with RSA key generation - RSA key generation is much slower than expected

Corstone-1000

* RSA key generation fails with “PsaErrorDatalnvalid” when using Parsec.

* Due to limited performance, characters may be dropped if too much data is sent too quickly. Consider inserting
delays between characters if sending files or large buffers.

* Due to the limited performance, K3S is not currently supported.

N1SDP

* Support for the N1SDP platform in Cassini is primarily intended for development, test, and demonstration of
features for infrastructure platforms which typically use EDK?2 and Trusted Services without a secure enclave.

* Due to a limitation of the platform hardware (it does not have enough Secure world RAM) Trusted Services is
configured to run from Normal world RAM. This configuration is not compliant with the PSA specifications.
Platforms intended for production should be configured by the platform provider to be compliant with the PSA
specifications.

* Booting the distribution image from USB storage device means storage performance may be may limited by that
device. If unexpected issues or test failures are seen when booting from USB, try using a USB device with better
performance or alternatively try booting from a SATA storage device.

77

Cassini

8.1.2 Known Test Failures

All platforms
* Due to RSA key performance, the following tests take more time to complete than is stated in the developer
guide:
— Parsec simple end-to-end Tests may take up to 5 hours to complete
— OP-TEE Sanity Tests may take up to 12 hours to complete
* The following tests are expected to fail:
— Platform Security Architecture API Tests:
% psa-crypto-api-test 262 (Test psa_hash_suspend - SHA224)
% psa-crypto-api-test 263 (Test psa_hash_resume - SHA224)

Corstone-1000

* The following tests are expected to fail:
— Parsec simple end-to-end Tests:
% All RSA key tests fail with “PsaErrorDatalnvalid” or “PsaErrorDoesNotExist”

* The following are failures which are known to occur with the latest release of the Corstone-1000 plat-
form software from meta-arm (CORSTONE1000-2023.06). See Test Report for CORSTONE1000-
2023.06.

— ACS BSA tests:
% Check Cryptographic extensions (Failed on PE)
% Check PMU Overflow signal (Invalid Interrupt ID number 0x750062)
Memory mapped timer check (Read-write check failed for CNTBaseN.CNTP_CTL, expected value 3)
% Generate Mem Mapped SYS Timer Intr (Sys timer interrupt not received on 34)
* Wake from System Timer Int (Received Failsafe interrupt)
— ACS EBBR tests:
% UEFI Compliant - Hii protocols must be implemented
UEFI Compliant - Boot from network protocols must be implemented

% UEFI Compliant - DECOMPRESS protocol must exist

% BS.ConnectController - InterfaceTestCheckpoint14 (FA8D1C2D-1EBA-4E4C-A16D-
748A01ABE6C1)

% BS.ConnectController - InterfaceTestCheckpoint14 (25CFFDF5-D252-4515-AF8F-
D8DB68F022C3)

% BS.ConnectController - InterfaceTestCheckpoint14 (555913E8-BA56-4C68-80B5-
A96B8A3AFCB1)

* BS.GetNextMonotonicCount - high 32 bit increase by 1 (F48D1C2D-1EBA-4E4C-A16D-
748A01ABE6C1)

% BS.GetNextMonotonicCount - high 32 bit increase by 1 (ES8B96EA0-6413-4947-ADI1A-
31EEF868A372)

78 Chapter 8. Release Notes

https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-test-report/-/tree/master/embedded-a/corstone1000/CORSTONE1000-2023.06
https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-test-report/-/tree/master/embedded-a/corstone1000/CORSTONE1000-2023.06

Cassini

*k

*k

BS.GetNextMonotonicCount - high 32 bit increase by 1 (0OEC16C83-177D-461A-9622-

42508C99D966)

RT.SetTime - Verify year after change

RT.SetTime - Verify month after change

RT.SetTime - Verify daylight after change

RT.SetTime - Verify time zone after change

RT.SetTime - Verify year after change

RT.SetTime - Verify month after change

RT.SetTime - Verify daylight after change

RT.SetTime - Verify time zone after change
RT.UpdateCapsule - invoke UpdateCapsule with invalid ScatterGatherList
RT.UpdateCapsule - invoke UpdateCapsule with invalid Flags
RT.UpdateCapsule - invoke UpdateCapsule with invalid Flags

— ACS SCT Tests:

*

%

HII_DATABASE_PROTOCOL.ExportPackageLists (ExportPackageLists()

EFI_BUFFER_TOO_SMALL)

HII_DATABASE_PROTOCOL.SetKeyboardLayout (SetKeyboardLayout()

EFI_INVALID_PARAMETER)

— ACS FWTS Tests:
% Validity of fw_class in UEFI ESRT Table for EBBR (The fw_classis set to default u-boot raw guid)

N1SDP

returns

returns

* Some test failures are expected as the platform support is currently incomplete (pending further feature develop-

ment):

— Platform Security Architecture API Tests:

*

*

psa-api-iat-test 601 (fails with actual code 42, expected 0)

psa-api-ps-test 414 (fails with actual code 0, expected -134)

— ACS BSA tests:

%

*

*k

Check Arch symmetry across PE (Timed out for PE index = 2)

Check for AdvSIMD and FP support (PSCI_CPU_ON: cpu already on)
Check PE 4KB Granule Support (PSCI_CPU_ON: cpu already on)
Check HW Coherence support (PSCI_CPU_ON: cpu already on)
Check Cryptographic extensions (PSCI_CPU_ON: cpu already on)
Check Little Endian support (PSCI_CPU_ON: cpu already on)

Check EL1 and ELO implementation (PSCI_CPU_ON: cpu already on)
Check for PMU and PMU counters (PSCI_CPU_ON: cpu already on)
Check num of Breakpoints and type (PSCI_CPU_ON: cpu already on)

8.1. v1.0.0

79

Cassini

Check Synchronous Watchpoints (PSCI_CPU_ON: cpu already on)
% Check CRC32 instruction support (PSCI_CPU_ON: cpu already on)
% Check Speculation Restriction (PSCI_CPU_ON: cpu already on)
% Check Speculative Str Bypass Safe (PSCI_CPU_ON: cpu already on)
% Check PEs Impl CSDB,SSBB,PSSBB (PSCI_CPU_ON: cpu already on)
% Check PEs Implement SB Barrier (PSCI_CPU_ON: cpu already on)
% Check PE Impl CFP,DVP,CPP RCTX (PSCI_CPU_ON: cpu already on)
% Check PPI Assignments for OS (ELO-Phy timer not mapped to PPI recommended range)
% Wake from ELO PHY Timer Int (Invalid Interrupt ID number Ox AFAFAFAF)
% Wake from ELO VIR Timer Int (Invalid Interrupt ID number OxAFAFAFAF)
* Wake from EL2 PHY Timer Int (Invalid Interrupt ID number OxAFAFAFAF)
— ACS EBBR tests:
% UEFI Compliant - Boot from network protocols must be implemented
* BS.AllocatePool - Type is EfiMaxMemoryType
— ACS SCT Tests:
% BS.SetWatchdogTimer (should not reset after 3.5s)
— ACS FWTS Tests:

% Error: uefivarinfo (initialisation failed)

8.2 v1.0.1

8.2.1 Known Issues or Limitations

All platforms

* There is a performance issue with RSA key generation - RSA key generation is much slower than expected

Corstone-1000

* RSA key generation fails with “PsaErrorDatalnvalid” when using Parsec.

* Due to limited performance, characters may be dropped if too much data is sent too quickly. Consider inserting
delays between characters if sending files or large buffers.

* Due to the limited performance, K3S is not currently supported.

80 Chapter 8. Release Notes

Cassini

N1SDP
* Support for the N1SDP platform in Cassini is primarily intended for development, test, and demonstration of
features for infrastructure platforms which typically use EDK?2 and Trusted Services without a secure enclave.

* Due to a limitation of the platform hardware (it does not have enough Secure world RAM) Trusted Services is
configured to run from Normal world RAM. This configuration is not compliant with the PSA specifications.
Platforms intended for production should be configured by the platform provider to be compliant with the PSA
specifications.

* Booting the distribution image from USB storage device means storage performance may be may limited by that
device. If unexpected issues or test failures are seen when booting from USB, try using a USB device with better
performance or alternatively try booting from a SATA storage device.

8.2.2 Known Test Failures

All platforms
* Due to RSA key performance, the following tests take more time to complete than is stated in the developer
guide:
— Parsec simple end-to-end Tests may take up to 5 hours to complete
— OP-TEE Sanity Tests may take up to 12 hours to complete
* The following tests are expected to fail:
— Platform Security Architecture API Tests:
% psa-crypto-api-test 262 (Test psa_hash_suspend - SHA224)
% psa-crypto-api-test 263 (Test psa_hash_resume - SHA224)

Corstone-1000

* The following tests are expected to fail:
— Parsec simple end-to-end Tests:
% All RSA key tests fail with “PsaErrorDatalnvalid” or “PsaErrorDoesNotExist”

* The following are failures which are known to occur with the latest release of the Corstone-1000 plat-
form software from meta-arm (CORSTONE1000-2023.06). See Test Report for CORSTONE1000-
2023.06.

— ACS BSA tests:
% Check Cryptographic extensions (Failed on PE)
% Check PMU Overflow signal (Invalid Interrupt ID number 0x750062)
Memory mapped timer check (Read-write check failed for CNTBaseN.CNTP_CTL, expected value 3)
% Generate Mem Mapped SYS Timer Intr (Sys timer interrupt not received on 34)
* Wake from System Timer Int (Received Failsafe interrupt)
— ACS EBBR tests:
% UEFI Compliant - Hii protocols must be implemented

UEFI Compliant - Boot from network protocols must be implemented

8.2. v1.0.1 81

https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-test-report/-/tree/master/embedded-a/corstone1000/CORSTONE1000-2023.06
https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-test-report/-/tree/master/embedded-a/corstone1000/CORSTONE1000-2023.06

Cassini

% UEFI Compliant - DECOMPRESS protocol must exist

% BS.ConnectController - InterfaceTestCheckpoint14 (FA8D1C2D-1EBA-4E4C-A16D-
748A01ABE6C1)

BS.ConnectController - InterfaceTestCheckpoint14 (25CFFDF5-D252-4515-AFSF-
D8DB68F022C3)

% BS.ConnectController - InterfaceTestCheckpoint14 (555913E8-BA56-4C68-80B5-

A96B8A3AFCB1)

* BS.GetNextMonotonicCount - high 32 bit increase by 1 (F48D1C2D-1EBA-4E4C-A16D-

748A01ABE6C1)

BS.GetNextMonotonicCount - high 32 bit increase by 1 (ES8B96EA0-6413-4947-ADI1A-

31EEF868A372)

% BS.GetNextMonotonicCount - high 32 bit increase by 1 (0EC16C83-177D-461A-9622-

42508C99D966)
% RT.SetTime - Verify year after change
% RT.SetTime - Verify month after change
RT.SetTime - Verify daylight after change
% RT.SetTime - Verify time zone after change
% RT.SetTime - Verify year after change
% RT.SetTime - Verify month after change
* RT.SetTime - Verify daylight after change

% RT.SetTime - Verify time zone after change

RT.UpdateCapsule - invoke UpdateCapsule with invalid ScatterGatherList

% RT.UpdateCapsule - invoke UpdateCapsule with invalid Flags
RT.UpdateCapsule - invoke UpdateCapsule with invalid Flags

— ACS SCT Tests:

% HII_DATABASE_PROTOCOL.ExportPackageLists
EFI_BUFFER_TOO_SMALL)

+ HII_DATABASE_PROTOCOL.SetKeyboardLayout
EFI_INVALID_PARAMETER)

— ACS FWTS Tests:

N1SDP

* Validity of fw_class in UEFI ESRT Table for EBBR (The fw_

(ExportPackageLists() returns

(SetKeyboardLayout() returns

classis set to default u-boot raw guid)

* Some test failures are expected as the platform support is currently incomplete (pending further feature develop-

ment):

— Platform Security Architecture API Tests:

% psa-api-iat-test 601 (fails with actual code 42, expected 0)

% psa-api-ps-test 414 (fails with actual code 0, expected -134)

— ACS BSA tests:

82

Chapter 8. Release Notes

Cassini

% Check Arch symmetry across PE (Timed out for PE index = 2)
% Check for AdvSIMD and FP support (PSCI_CPU_ON: cpu already on)
% Check PE 4KB Granule Support (PSCI_CPU_ON: cpu already on)
% Check HW Coherence support (PSCI_CPU_ON: cpu already on)
Check Cryptographic extensions (PSCI_CPU_ON: cpu already on)
% Check Little Endian support (PSCI_CPU_ON: cpu already on)
% Check EL1 and ELO implementation (PSCI_CPU_ON: cpu already on)
Check for PMU and PMU counters (PSCI_CPU_ON: cpu already on)
% Check num of Breakpoints and type (PSCI_CPU_ON: cpu already on)
% Check Synchronous Watchpoints (PSCI_CPU_ON: cpu already on)
Check CRC32 instruction support (PSCI_CPU_ON: cpu already on)
% Check Speculation Restriction (PSCI_CPU_ON: cpu already on)
% Check Speculative Str Bypass Safe (PSCI_CPU_ON: cpu already on)
% Check PEs Impl CSDB,SSBB,PSSBB (PSCI_CPU_ON: cpu already on)
Check PEs Implement SB Barrier (PSCI_CPU_ON: cpu already on)
% Check PE Impl CFP,DVP,CPP RCTX (PSCI_CPU_ON: cpu already on)
% Check PPI Assignments for OS (ELO-Phy timer not mapped to PPI recommended range)
* Wake from ELO PHY Timer Int (Invalid Interrupt ID number OxAFAFAFAF)
% Wake from ELO VIR Timer Int (Invalid Interrupt ID number 0OxAFAFAFAF)
% Wake from EL2 PHY Timer Int (Invalid Interrupt ID number Ox AFAFAFAF)
— ACS EBBR tests:
UEFI Compliant - Boot from network protocols must be implemented
% BS.AllocatePool - Type is EfiMaxMemoryType
— ACS SCT Tests:
* BS.SetWatchdogTimer (should not reset after 3.5s)
— ACS FWTS Tests:

* Error: uefivarinfo (initialisation failed)

8.3 v1.1.0

8.3.1 Known Issues or Limitations

Corstone-1000
* There is a performance issue with RSA key generation - RSA key generation is slower than expected. This is a
known platform issue.

* Due to limited performance, characters may be dropped if too much data is sent too quickly. Consider inserting
delays between characters if sending files or large buffers.

8.3. v1.1.0 83

Cassini

* Due to the limited performance, K3S is not currently supported.

* Due to the limited performance, there may be a timeout when pulling the first image from Docker Hub after
the Docker daemon has started. Before running the container tests, it may be necessary to run the following
command:

Esudo docker image pull -q hello-world J

N1SDP
* Support for the N1SDP platform in Cassini is primarily intended for development, test, and demonstration of
features for infrastructure platforms which typically use EDK?2 and Trusted Services without a secure enclave.

* Due to a limitation of the platform hardware (it does not have enough Secure world RAM) Trusted Services is
configured to run from Normal world RAM. This configuration is not compliant with the PSA specifications.
Platforms intended for production should be configured by the platform provider to be compliant with the PSA
specifications.

* Booting the distribution image from USB storage device means storage performance may be may limited by that
device. If unexpected issues or test failures are seen when booting from USB, try using a USB device with better
performance or alternatively try booting from a SATA storage device.

8.3.2 Known Test Failures

All platforms

* The following tests are expected to fail:
— Platform Security Architecture API Tests:
% psa-crypto-api-test 262 (Test psa_hash_suspend - SHA224)
% psa-crypto-api-test 263 (Test psa_hash_resume - SHA224)

Corstone-1000

* The following tests are expected to fail:

— The following are failures which are known to occur with the latest release of the Corstone-1000 platform
software from meta-arm (CORSTONE1000-2023.06). See Test Report for CORSTONE1000-2023.11.

— ACS BSA tests:
% Check Cryptographic extensions (Failed on PE)
Check PMU Overflow signal (Invalid Interrupt ID number 0x750062)
Memory mapped timer check (Read-write check failed for CNTBaseN.CNTP_CTL, expected value 3)
% Generate Mem Mapped SYS Timer Intr (Sys timer interrupt not received on 34)
% Wake from System Timer Int (Received Failsafe interrupt)
— ACS EBBR tests:
+ UEFI Compliant - Hii protocols must be implemented
% UEFI Compliant - DECOMPRESS protocol must exist
BS.ConnectController - InterfaceTestCheckpoint14 (4643E80E-A6BF-412C-B4FF-9629282BC831)

84 Chapter 8. Release Notes

https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-test-report/-/tree/master/embedded-a/corstone1000/CORSTONE1000-2023.11

Cassini

*

*

BS.ConnectController - InterfaceTestCheckpoint14 (25CFFDF5-D252-4515-AFSF-
D8DB68F022C3)

BS.ConnectController - InterfaceTestCheckpoint14 (555913E8-BA56-4C68-80B5-
A96B8A3AFCB1)

BS.GetNextMonotonicCount - high 32 bit increase by 1 (F48D1C2D-1EBA-4E4C-A16D-

748A01ABE6C1)

BS.GetNextMonotonicCount - high 32 bit increase by 1 (ES8B96EA0-6413-4947-ADIA-
31EEF868A372)

BS.GetNextMonotonicCount - high 32 bit increase by 1 (OEC16C83-177D-461A-9622-
42508C99D966)

RT.QueryVariableInfo - With Attributes being 0
RT.QueryVariableInfo - With being an invalid combination
RT.SetTime - Verify year after change

RT.SetTime - Verify month after change

RT.SetTime - Verify daylight after change

RT.SetTime - Verify time zone after change

RT.SetTime - Verify year after change

RT.SetTime - Verify month after change

RT.SetTime - Verify daylight after change

RT.SetTime - Verify time zone after change
RT.UpdateCapsule - invoke UpdateCapsule with invalid ScatterGatherList
RT.UpdateCapsule - invoke UpdateCapsule with invalid Flags
RT.UpdateCapsule - invoke UpdateCapsule with invalid Flags

— ACS SCT Tests:

*k

N1SDP

HII_DATABASE_PROTOCOL.NewPackageList - NewPackageList() returns EFI_SUCCESS with
valid inputs.”

» Some test failures are expected as the platform support is currently incomplete (pending further feature develop-

ment):

— Platform Security Architecture API Tests:

*k

*k

psa-api-iat-test 601 (fails with actual code 42, expected 0)

psa-api-ps-test 414 (fails with actual code 0, expected -134)

— ACS BSA tests:

*

*k

%

*

Check Arch symmetry across PE (Timed out for PE index = 2)

Check for AdvSIMD and FP support (PSCI_CPU_ON: cpu already on)
Check PE 4KB Granule Support (PSCI_CPU_ON: cpu already on)
Check HW Coherence support (PSCI_CPU_ON: cpu already on)

8.3. v1.1.0

85

Cassini

*k

*k

Check Cryptographic extensions (PSCI_CPU_ON: cpu already on)

Check Little Endian support (PSCI_CPU_ON: cpu already on)

Check EL1 and ELO implementation (PSCI_CPU_ON: cpu already on)
Check for PMU and PMU counters (PSCI_CPU_ON: cpu already on)

Check num of Breakpoints and type (PSCI_CPU_ON: cpu already on)
Check Synchronous Watchpoints (PSCI_CPU_ON: cpu already on)

Check CRC32 instruction support (PSCI_CPU_ON: cpu already on)

Check Speculation Restriction (PSCI_CPU_ON: cpu already on)

Check Speculative Str Bypass Safe (PSCI_CPU_ON: cpu already on)

Check PEs Impl CSDB,SSBB,PSSBB (PSCI_CPU_ON: cpu already on)
Check PEs Implement SB Barrier (PSCI_CPU_ON: cpu already on)

Check PE Impl CFP,DVP,CPP RCTX (PSCI_CPU_ON: cpu already on)
Check PPI Assignments for OS (ELO-Phy timer not mapped to PPI recommended range)
Wake from ELO PHY Timer Int (Invalid Interrupt ID number 0OxAFAFAFAF)
Wake from ELO VIR Timer Int (Invalid Interrupt ID number OxAFAFAFAF)
Wake from EL2 PHY Timer Int (Invalid Interrupt ID number Ox AFAFAFAF)

— ACS FWTS Tests:

*

Error: uefivarinfo (initialisation failed)

8.4 v2.0.0

8.4.1 Known Issues or Limitations

Corstone-1000

* There is a performance issue with RSA key generation - RSA key generation is slower than expected. This is a
known platform issue.

* Due to limited performance, characters may be dropped if too much data is sent too quickly. Consider inserting
delays between characters if sending files or large buffers.

* Due to the limited performance, K3s is not currently supported.

Corstone-1000 FVP

* RsaPkcs1v15Crypt operations do not work properly due to the limited support in crypto-cell drivers

86

Chapter 8. Release Notes

Cassini

N1SDP
* Support for the N1SDP platform in Cassini is primarily intended for development, test, and demonstration of
features for infrastructure platforms which typically use EDK?2 and Trusted Services without a secure enclave.

* Due to a limitation of the platform hardware (it does not have enough Secure world RAM) Trusted Services is
configured to run from Normal world RAM. This configuration is not compliant with the PSA specifications.
Platforms intended for production should be configured by the platform provider to be compliant with the PSA
specifications.

* Booting the distribution image from USB storage device means storage performance may be may limited by that
device. If unexpected issues or test failures are seen when booting from USB, try using a USB device with better
performance or alternatively try booting from a SATA storage device.

KV260

* RCU stalls may be detected during boot or in some test cases

8.4.2 Known Test Failures

All platforms

* The following tests are expected to fail:
— AWS Greengrass IoT Device Tester
% GGV2Q cloudcomponent and mqttpubsub fail a SignatureException on the device under test

% GGV2Q lambdadeployment randomly fails to deploy the test component

Corstone-1000

* The following tests are expected to fail:
— AWS Greengrass IoT Device Tester
% GGV2Q docker tests time out while trying to create a deployment on the device

* The following are failures which are known to occur with the latest
release of the Corstone-1000 platform software from meta-arm (CORSTONE1000-2024.06). See Test
Report for CORSTONE1000-2024.06.

— ACS BSA tests:
% Check Cryptographic extensions (Failed on PE)
% Check PMU Overflow signal (Invalid Interrupt ID number 0x750062)
Memory mapped timer check (Read-write check failed for CNTBaseN.CNTP_CTL, expected value 3)
Generate Mem Mapped SYS Timer Intr (Sys timer interrupt not received on 34)
* Wake from System Timer Int (Received Failsafe interrupt)
— ACS EBBR tests:
% UEFI Compliant - Hii protocols must be implemented

% UEFI Compliant - DECOMPRESS protocol must exist

8.4. v2.0.0 87

https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-test-report/-/tree/master/embedded-a/corstone1000/CORSTONE1000-2024.06
https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-test-report/-/tree/master/embedded-a/corstone1000/CORSTONE1000-2024.06

Cassini

*

*k

BS.ConnectController - InterfaceTestCheckpoint14 (4643ES8OE-A6BF-412C-B4FF-9629282BC831)

BS.ConnectController - InterfaceTestCheckpoint14 (25CFFDF5-D252-4515-AF8F-
D8DB68F022C3)

BS.ConnectController - InterfaceTestCheckpoint14 (555913E8-BA56-4C68-80B5-
A96B8A3AFCBI1)

BS.GetNextMonotonicCount - high 32 bit increase by 1 (F48D1C2D-1EBA-4E4C-A16D-
748A01ABE6C1)

BS.GetNextMonotonicCount - high 32 bit increase by 1 (E8BY96EA0-6413-4947-AD1A-
31EEF868A372)

BS.GetNextMonotonicCount - high 32 bit increase by 1 (0EC16C83-177D-461A-9622-
42508C99D966)

RT.Query VariableInfo - With Attributes being 0

RT.Query VariableInfo - With being an invalid combination
RT.SetTime - Verify year after change

RT.SetTime - Verify month after change

RT.SetTime - Verify daylight after change

RT.SetTime - Verify time zone after change

RT.SetTime - Verify year after change

RT.SetTime - Verify month after change

RT.SetTime - Verify daylight after change

RT.SetTime - Verify time zone after change
RT.UpdateCapsule - invoke UpdateCapsule with invalid ScatterGatherList
RT.UpdateCapsule - invoke UpdateCapsule with invalid Flags
RT.UpdateCapsule - invoke UpdateCapsule with invalid Flags

— ACS SCT Tests:

*

*k

HII_ DATABASE_PROTOCOL.ExportPackageLists - ExportPackageLists() returns
EFI_BUFFER_TOO_SMALL with BufferSize indicates the buffer is too small

HII_DATABASE_PROTOCOL.NewPackageList - NewPackageList() returns EFI_SUCCESS with
valid inputs.”

Corstone-1000 FVP

* The following tests are expected to fail:

— PARSEC simple E2E tests

*

Decrypt operations fail with PsaErrorHardwareFailure when using psa-security

88

Chapter 8. Release Notes

Cassini

N1SDP

» Some test failures are expected as the platform support is currently incomplete (pending further feature develop-

ment):

— Platform Security Architecture API Tests:

%

*

psa-api-iat-test 601 (fails with actual code 42, expected 0)

psa-api-ps-test 414 (fails with actual code 0, expected -134)

— ACS BSA tests:

*k

%

*k

*

Check Arch symmetry across PE (Timed out for PE index = 2)

Check for AdvSIMD and FP support (PSCI_CPU_ON: cpu already on)
Check PE 4KB Granule Support (PSCI_CPU_ON: cpu already on)

Check HW Coherence support (PSCI_CPU_ON: cpu already on)

Check Cryptographic extensions (PSCI_CPU_ON: cpu already on)

Check Little Endian support (PSCI_CPU_ON: cpu already on)

Check EL1 and ELO implementation (PSCI_CPU_ON: cpu already on)
Check for PMU and PMU counters (PSCI_CPU_ON: cpu already on)

Check num of Breakpoints and type (PSCI_CPU_ON: cpu already on)
Check Synchronous Watchpoints (PSCI_CPU_ON: cpu already on)

Check CRC32 instruction support (PSCI_CPU_ON: cpu already on)

Check Speculation Restriction (PSCI_CPU_ON: cpu already on)

Check Speculative Str Bypass Safe (PSCI_CPU_ON: cpu already on)

Check PEs Impl CSDB,SSBB,PSSBB (PSCI_CPU_ON: cpu already on)
Check PEs Implement SB Barrier (PSCI_CPU_ON: cpu already on)

Check PE Impl CFP,DVP,CPP RCTX (PSCI_CPU_ON: cpu already on)
Check PPI Assignments for OS (ELO-Phy timer not mapped to PPI recommended range)
Wake from ELO PHY Timer Int (Invalid Interrupt ID number 0xAFAFAFAF)
Wake from ELO VIR Timer Int (Invalid Interrupt ID number OxAFAFAFAF)
Wake from EL2 PHY Timer Int (Invalid Interrupt ID number Ox AFAFAFAF)

— ACS FWTS Tests:

*k

Error: uefivarinfo (initialisation failed)

8.4. v2.0.0

89

Cassini

8.5 v2.1.0

8.5.1 Known Issues or Limitations

All platforms

* Cassini will no longer support parsec-service in future releases.

Corstone-1000
* Due to limited performance, characters may be dropped if too much data is sent too quickly. Consider inserting
delays between characters if sending files or large buffers.

* Due to the limited performance, K3s is not currently supported.

Corstone-1000 FVP

* RsaPkcs1v15Crypt operations do not work properly due to the limited support in crypto-cell drivers

KV260 with EDK-II

 Data abort faults are encountered when using UEFI memory allocation boot services

8.5.2 Known Test Failures

All platforms

* The following tests are expected to fail:
— AWS Greengrass IoT Device Tester
% GGV2Q cloudcomponent and mqttpubsub fail a SignatureException on the device under test

% GGV2Q lambdadeployment randomly fails to deploy the test component

Corstone-1000

* The following tests are expected to fail:
— AWS Greengrass IoT Device Tester
% GGV2Q docker tests time out while trying to create a deployment on the device

* The following are failures which are known to occur with the latest release of the Corstone-1000 platform software
from meta-arm (CORSTONE1000-2024.11). See Test Report for CORSTONE1000-2024.11.

— ACS BSA tests:
Check Arch symmetry across PE
% Check for AdvSIMD and FP support
% Check PE 4KB Granule Support

% Check Cryptographic extensions

90 Chapter 8. Release Notes

https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-test-report/-/tree/master/embedded-a/corstone1000/CORSTONE1000-2024.11

Cassini

*k

*

Check Little Endian support

Check EL1 and ELO implementation
Check for PMU and PMU counters
Check PMU Overflow signal

Check num of Breakpoints and type
Check Synchronous Watchpoints
Check CRC32 instruction support
Memory mapped timer check

Generate Mem Mapped SYS Timer Intr

Wake from System Timer Int

— ACS EBBR tests:

*k

%

*

*

*k

UEFI Compliant - Hii protocols must be implemented
UEFI Compliant - DECOMPRESS protocol must exist

BS.ConnectController - InterfaceTestCheckpoint14 (4643ES8OE-A6BF-412C-B4FF-9629282BC831)
(25CFFDF5-D252-4515-AF8F-

BS.ConnectController - InterfaceTestCheckpoint14
D8DB68F022C3)

BS.ConnectController - InterfaceTestCheckpoint14
A96B8A3AFCB1)

(555913E8-BA56-4C68-80B5-

BS.GetNextMonotonicCount - high 32 bit increase by 1 (F48D1C2D-1EBA-4E4C-A16D-

748A01ABEG6C1)

BS.GetNextMonotonicCount - high 32 bit increase by 1 (ES8B96EA0-6413-4947-ADIA-

31EEF868A372)

BS.GetNextMonotonicCount - high 32 bit increase by

42508C99D966)

RT.QueryVariableInfo - With Attributes being 0
RT.QueryVariablelnfo - With being an invalid combination
RT.SetTime - Verify daylight after change

RT.SetTime - Verify time zone after change

RT.SetTime - Verify year after change

RT.SetTime - Verify month after change

RT.SetTime - Verify time zone after change

— ACS SCT Tests:

*

HII_DATABASE_PROTOCOL.ExportPackageLists -

1 (OEC16C83-177D-461A-9622-

ExportPackageLists()

EFI_BUFFER_TOO_SMALL with BufferSize indicates the buffer is too small
+ HII_DATABASE_PROTOCOL.NewPackageList - NewPackageList() returns EFI_SUCCESS with

valid inputs.

returns

8.5. v2.1.0

91

Cassini

Corstone-1000 FVP

* The following tests are expected to fail:

— PARSEC simple E2E tests

% Decrypt operations fail with PsaErrorHardwareFailure when using psa-security

— Greengrass tests

% Provisioning fails due to the RSA limitation. Hence, all IDT tests are expected to fail except for de-

pendency and version checks.

KV260 with U-Boot

* The following tests are expected to fail:

— ACS BSA tests:
Check Arch symmetry across PE
% Check for AdvSIMD and FP support
% Check PE 4KB Granule Support
% Check Cryptographic extensions
% Check Little Endian support
% Check EL1 and ELO implementation
% Check for PMU and PMU counters
Check num of Breakpoints and type
Check Synchronous Watchpoints
% Check CRC32 instruction support
% SYS Timer if PE Timer not ON
% Check Arm BSA UART register offsets
% 16550 compatible UART

— ACS EBBR tests:
% Same failures for Corstone-1000, along with the following:

- BS.ExitBootServices - ConsistencyTestCheckpointl

- RT.SetVariable - Non-volatile variable after system reset

- RT.UpdateCapsule - invoke UpdateCapsule with invalid ScatterGatherList

- RT.UpdateCapsule - invoke UpdateCapsule with invalid Flags
- RT.UpdateCapsule - invoke UpdateCapsule with invalid Flags

92

Chapter 8.

Release Notes

Cassini

KV260 with EDK-II

* The following tests are expected to fail:

— ACS is expected to fail during memory allocation tests.

8.5. v2.1.0

93

	Introduction
	Use-Case Overview
	Architecture
	Features Overview
	Documentation Assumptions

	Repository Structure
	Repository License
	Contributions and Issue Reporting
	Feedback and support
	Maintainer(s)

	User Manual
	Build, Deploy and Validate Cassini Image
	Build Host Environment Setup
	Download
	Build and Deploy
	Run
	Validate
	Reproducing the Cassini Use-Cases
	Deploying Application Workloads via Docker and K3s

	Getting Started with Arm Corstone-1000 for MPS3
	Build
	Building MPS3 images
	Prepare the firmware image for FPGA (Micro SD card)
	Prepare the distro image for FPGA (USB image)
	Running the software on FPGA

	Getting Started with Arm Corstone-1000 FVP
	Build
	Building FVP images
	Running the FVP
	Validation

	Getting Started with KV260
	Building KV260 Images
	Flashing the Firmware
	Flashing the Distro Image
	Connecting to the serial port

	Getting Started with Generic Arm64 Images
	Building Generic Arm64 Images
	Flashing the Distro Image

	Developer Manual
	User Accounts
	Build System
	kas Build Tool Support
	Target Platforms
	Corstone-1000 for MPS3
	Corstone-1000 FVP
	Kria KV260 with U-boot
	Kria KV260 with EDK-II
	Kria KV260 with fTPM
	Generic Arm64

	Distribution Image Features
	Cassini Architecture
	Other Cassini Features
	Developer Support
	Run-Time Integration Tests
	Cloud Service
	No Cloud
	K3s orchestration
	AWS IoT Greengrass

	Over-the-Air Update
	Mender
	No OTA

	Security Service
	PSA Provider
	SW Provider
	TPM Provider

	Parsec service
	Security Hardening
	TPM Support

	Additional Distribution Image Customizations
	Filesystem Customization
	Adding Extra Rootfs Space
	Tuning the Filesystem Compilation

	Manual BitBake Build Setup

	Yocto Layers
	Layer Dependency Overview

	Security Hardening
	Validation
	Build-Time Kernel Configuration Check
	Run-Time Integration Tests
	Preparing the device
	Running the Tests
	Test Logging
	Test Suites
	Container Engine Tests
	Container Engine Environment Clean-Up

	Parsec OpenSSL Provider Tests
	Parsec OpenSSL Provider Environment Clean-Up

	TPM OpenSSL Provider Tests
	TPM OpenSSL Provider Environment Clean-Up

	K3s Orchestration Tests
	K3s Environment Clean-Up

	User Accounts Tests
	User Accounts Environment Clean-Up

	Parsec simple end-to-end Tests
	Parsec Simple End2End Tests Environment Clean-Up

	Platform Security Architecture API Tests
	Platform Security Architecture API Tests Environment Clean-Up

	Mender Validation
	Overview
	Build with Mender Support
	Setup Mender Server
	DUT Provisioning
	Mender System Update
	Mender Capsule Update
	Stop Mender Server

	Building the documentation

	Codeline Management
	Yocto Release Process Overview
	Cassini Branch and Release Process
	Cassini main branch
	Cassini release branches
	Cassini release tags

	Contributing
	License
	Contributing to Cassini distribution
	Commit guidelines
	Describe your changes
	Separate your changes
	Commit messages guidelines
	Why these standards matter
	Commit message template

	Changelog entries
	Overview
	Overriding the associated merge request

	What warrants a changelog entry?
	Writing good changelog entries
	How to generate a changelog entry

	Submitting changes
	Merge criteria

	Continuous integration and development (CI/CD)
	Introduction
	Overview
	Architecture

	GitLab Templates
	Code Quality
	Usage
	Hooks

	GitLab pipeline
	Parent pipeline
	Child pipeline

	Amazon Web Services (AWS) IoT Device Tester (IDT)
	Overview

	License
	SPDX Identifiers

	Release Notes
	v1.0.0
	Known Issues or Limitations
	All platforms
	Corstone-1000
	N1SDP

	Known Test Failures
	All platforms
	Corstone-1000
	N1SDP

	v1.0.1
	Known Issues or Limitations
	All platforms
	Corstone-1000
	N1SDP

	Known Test Failures
	All platforms
	Corstone-1000
	N1SDP

	v1.1.0
	Known Issues or Limitations
	Corstone-1000
	N1SDP

	Known Test Failures
	All platforms
	Corstone-1000
	N1SDP

	v2.0.0
	Known Issues or Limitations
	Corstone-1000
	Corstone-1000 FVP
	N1SDP
	KV260

	Known Test Failures
	All platforms
	Corstone-1000
	Corstone-1000 FVP
	N1SDP

	v2.1.0
	Known Issues or Limitations
	All platforms
	Corstone-1000
	Corstone-1000 FVP
	KV260 with EDK-II

	Known Test Failures
	All platforms
	Corstone-1000
	Corstone-1000 FVP
	KV260 with U-Boot
	KV260 with EDK-II

